Loading…
Chronic dietary magnesium-L-threonate speeds extinction and reduces spontaneous recovery of a conditioned taste aversion
Elevation of brain magnesium enhances synaptic plasticity and extinction of conditioned fear memories. This experiment examined the generalizability of this phenomenon by studying the effects of a novel magnesium compound, magnesium-L-threonate (MgT), on conditioned taste aversion (CTA) extinction a...
Saved in:
Published in: | Pharmacology, biochemistry and behavior biochemistry and behavior, 2013-05, Vol.106, p.16-26 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Elevation of brain magnesium enhances synaptic plasticity and extinction of conditioned fear memories. This experiment examined the generalizability of this phenomenon by studying the effects of a novel magnesium compound, magnesium-L-threonate (MgT), on conditioned taste aversion (CTA) extinction and spontaneous recovery (SR). Adult male Sprague–Dawley rats were maintained on a 23-hour water deprivation cycle and acquired a CTA following the taste of a CS [0.3% saccharin+16mg/ml MgT (SAC+MgT)] paired with a US [81mg/kg (i.p.) lithium chloride (LiCl)]. Following CTA acquisition, rats drank a water+MgT solution for up to 1hour/day over the next 31days. For 14 additional days, some animals continued water+MgT treatment, but others drank water only to allow MgT to be eliminated from the body. We then employed 2 different extinction paradigms: (1) CS-Only (CSO), in which SAC was presented, every-other day, or (2) Explicitly Unpaired (EU), in which both SAC and LiCl were presented, but on alternate days. EU extinction procedures have been shown to speed CTA extinction and reduce spontaneous recovery of the aversion. Throughout extinction, half of the rats in each group continued to drink MgT (now in SAC or supplemental water+MgT solution), whereas the other half drank SAC only/water only until SAC drinking reached ≥90% of baseline (asymptotic extinction). Rats receiving MgT just before/during extinction drank less SAC on the first day of extinction suggesting that they had retained a stronger CTA. MgT enhanced the rate of extinction. Furthermore, the MgT-treated rats showed a relatively modest SR of the CTA 30days later — indicating that the extinction procedure was more effective for these animals. Our data suggest that long-term dietary MgT may enhance the consolidation/retention of a CTA, speed extinction, and inhibit SR of this learned aversion.
•Magnesium-L-threonate (MgT) effects on CTA extinction and spontaneous recovery (SR).•MgT-treated rats exhibited a stronger CTA than controls.•MgT enhanced the rate of CTA extinction.•MgT-treated rats showed a relatively modest SR of a CTA.•Elevation of brain magnesium may enhance some forms of memory. |
---|---|
ISSN: | 0091-3057 1873-5177 |
DOI: | 10.1016/j.pbb.2013.02.019 |