Loading…
Frequency and electrode discrimination in children with cochlear implants
The objective of this study was to develop reliable pediatric psychophysical methodologies in order to address the limits of frequency and electrode discrimination in children with cochlear implants. Discrimination was measured with a two-alternative, adaptive, forced choice design using a video gam...
Saved in:
Published in: | Hearing research 2010-09, Vol.268 (1), p.105-113 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this study was to develop reliable pediatric psychophysical methodologies in order to address the limits of frequency and electrode discrimination in children with cochlear implants. Discrimination was measured with a two-alternative, adaptive, forced choice design using a video game graphical user interface. Implanted children were compared to normal-hearing children in the same age ranges. Twenty-nine implanted children and 68 children with normal-hearing performed frequency discrimination studies at varying frequencies. Electrode discrimination was assessed in thirty-four implanted children at varying electrode locations and stimulation intensities. Older children had better frequency discrimination than younger children, both for implanted and hearing subjects. Implanted children had worse frequency discrimination overall and exhibited learning effects at older ages than hearing children. Frequency discrimination Weber fractions were smallest in low frequencies. Electrode discrimination improved with stimulus intensity level for older but not younger children at all electrode locations. These results support the premise that developmental changes in signal processing contribute to discrimination of simple acoustic stimuli. For implanted children, auditory discrimination improved at lower frequencies and with electrodes at higher intensity. These findings imply that spatial separation may not be the key determinant in creating discriminable electrical stimuli for this population. |
---|---|
ISSN: | 0378-5955 1878-5891 |
DOI: | 10.1016/j.heares.2010.05.006 |