Loading…

Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies

Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy ba...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-06, Vol.110 (23), p.9261-9266
Main Authors: Giuffre, Anthony J., Hamm, Laura M., Han, Nizhou, De Yoreo, James J., Dove, Patricia M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93
cites cdi_FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93
container_end_page 9266
container_issue 23
container_start_page 9261
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Giuffre, Anthony J.
Hamm, Laura M.
Han, Nizhou
De Yoreo, James J.
Dove, Patricia M.
description Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.
doi_str_mv 10.1073/pnas.1222162110
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3677451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42706601</jstor_id><sourcerecordid>42706601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEotvCmRMQqRcuaccfsZMLEqr4kiqBBD1bjjNJvCTxYjtI-9_jdJctcBrJ85s38_yy7AWBKwKSXe9mHa4IpZQISgg8yjYEalIIXsPjbANAZVFxys-y8xC2AFCXFTzNzigTNZRSbrLpqxv3QRszaG9bzM2Akw3R73OP_TLqiCH_YWeM1oTcdbnRo7ER83kxI-po3ZzHwbulH3Ljpl3i7t8SaeeIvtPG6jHHGX1vMTzLnnR6DPj8WC-yuw_vv998Km6_fPx88-62MGUpY8FAaAm05TWrWm64bqGimnVGt6KWyLluSlkLhrTpEBnvGiEoJqOmlVQ2NbvI3h50d0szYWtwjl6PauftpP1eOW3Vv53ZDqp3vxQTUvKSJIE3RwHvfi4Yokq_YnAc9YxuCYowUZYEaLnuuvwP3brFz8nePZXu5BwSdX2gjHcheOxOxxBQa5RqjVI9RJkmXv3t4cT_yS4Br4_AOnmSS3qUqZqK1cXLA7EN0fkTwqkEIYA8KHTaKd17G9TdNwpEQGpWACX7DfW1ulk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365796440</pqid></control><display><type>article</type><title>Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Giuffre, Anthony J. ; Hamm, Laura M. ; Han, Nizhou ; De Yoreo, James J. ; Dove, Patricia M.</creator><creatorcontrib>Giuffre, Anthony J. ; Hamm, Laura M. ; Han, Nizhou ; De Yoreo, James J. ; Dove, Patricia M.</creatorcontrib><description>Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1222162110</identifier><identifier>PMID: 23690577</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alginates ; Biomineralogy ; Calcification, Physiologic - physiology ; Calcite ; Calcium Carbonate - chemistry ; Crystallization ; Crystals ; Electroplating ; Free energy ; Functional groups ; Kinetics ; Microscopy, Electron, Scanning ; Models, Chemical ; Nucleation ; Physical Sciences ; Physiological regulation ; Polysaccharides ; Polysaccharides - chemistry ; Proteins ; Silicon ; Substrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (23), p.9261-9266</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 4, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93</citedby><cites>FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42706601$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42706601$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23690577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giuffre, Anthony J.</creatorcontrib><creatorcontrib>Hamm, Laura M.</creatorcontrib><creatorcontrib>Han, Nizhou</creatorcontrib><creatorcontrib>De Yoreo, James J.</creatorcontrib><creatorcontrib>Dove, Patricia M.</creatorcontrib><title>Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.</description><subject>Alginates</subject><subject>Biomineralogy</subject><subject>Calcification, Physiologic - physiology</subject><subject>Calcite</subject><subject>Calcium Carbonate - chemistry</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Electroplating</subject><subject>Free energy</subject><subject>Functional groups</subject><subject>Kinetics</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Chemical</subject><subject>Nucleation</subject><subject>Physical Sciences</subject><subject>Physiological regulation</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>Proteins</subject><subject>Silicon</subject><subject>Substrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxSMEotvCmRMQqRcuaccfsZMLEqr4kiqBBD1bjjNJvCTxYjtI-9_jdJctcBrJ85s38_yy7AWBKwKSXe9mHa4IpZQISgg8yjYEalIIXsPjbANAZVFxys-y8xC2AFCXFTzNzigTNZRSbrLpqxv3QRszaG9bzM2Akw3R73OP_TLqiCH_YWeM1oTcdbnRo7ER83kxI-po3ZzHwbulH3Ljpl3i7t8SaeeIvtPG6jHHGX1vMTzLnnR6DPj8WC-yuw_vv998Km6_fPx88-62MGUpY8FAaAm05TWrWm64bqGimnVGt6KWyLluSlkLhrTpEBnvGiEoJqOmlVQ2NbvI3h50d0szYWtwjl6PauftpP1eOW3Vv53ZDqp3vxQTUvKSJIE3RwHvfi4Yokq_YnAc9YxuCYowUZYEaLnuuvwP3brFz8nePZXu5BwSdX2gjHcheOxOxxBQa5RqjVI9RJkmXv3t4cT_yS4Br4_AOnmSS3qUqZqK1cXLA7EN0fkTwqkEIYA8KHTaKd17G9TdNwpEQGpWACX7DfW1ulk</recordid><startdate>20130604</startdate><enddate>20130604</enddate><creator>Giuffre, Anthony J.</creator><creator>Hamm, Laura M.</creator><creator>Han, Nizhou</creator><creator>De Yoreo, James J.</creator><creator>Dove, Patricia M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130604</creationdate><title>Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies</title><author>Giuffre, Anthony J. ; Hamm, Laura M. ; Han, Nizhou ; De Yoreo, James J. ; Dove, Patricia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alginates</topic><topic>Biomineralogy</topic><topic>Calcification, Physiologic - physiology</topic><topic>Calcite</topic><topic>Calcium Carbonate - chemistry</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Electroplating</topic><topic>Free energy</topic><topic>Functional groups</topic><topic>Kinetics</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Chemical</topic><topic>Nucleation</topic><topic>Physical Sciences</topic><topic>Physiological regulation</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>Proteins</topic><topic>Silicon</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giuffre, Anthony J.</creatorcontrib><creatorcontrib>Hamm, Laura M.</creatorcontrib><creatorcontrib>Han, Nizhou</creatorcontrib><creatorcontrib>De Yoreo, James J.</creatorcontrib><creatorcontrib>Dove, Patricia M.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giuffre, Anthony J.</au><au>Hamm, Laura M.</au><au>Han, Nizhou</au><au>De Yoreo, James J.</au><au>Dove, Patricia M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-06-04</date><risdate>2013</risdate><volume>110</volume><issue>23</issue><spage>9261</spage><epage>9266</epage><pages>9261-9266</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23690577</pmid><doi>10.1073/pnas.1222162110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (23), p.9261-9266
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3677451
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Alginates
Biomineralogy
Calcification, Physiologic - physiology
Calcite
Calcium Carbonate - chemistry
Crystallization
Crystals
Electroplating
Free energy
Functional groups
Kinetics
Microscopy, Electron, Scanning
Models, Chemical
Nucleation
Physical Sciences
Physiological regulation
Polysaccharides
Polysaccharides - chemistry
Proteins
Silicon
Substrates
title Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polysaccharide%20chemistry%20regulates%20kinetics%20of%20calcite%20nucleation%20through%20competition%20of%20interfacial%20energies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Giuffre,%20Anthony%20J.&rft.date=2013-06-04&rft.volume=110&rft.issue=23&rft.spage=9261&rft.epage=9266&rft.pages=9261-9266&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1222162110&rft_dat=%3Cjstor_pubme%3E42706601%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365796440&rft_id=info:pmid/23690577&rft_jstor_id=42706601&rfr_iscdi=true