Loading…
Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies
Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy ba...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2013-06, Vol.110 (23), p.9261-9266 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93 |
container_end_page | 9266 |
container_issue | 23 |
container_start_page | 9261 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Giuffre, Anthony J. Hamm, Laura M. Han, Nizhou De Yoreo, James J. Dove, Patricia M. |
description | Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation. |
doi_str_mv | 10.1073/pnas.1222162110 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3677451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42706601</jstor_id><sourcerecordid>42706601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEotvCmRMQqRcuaccfsZMLEqr4kiqBBD1bjjNJvCTxYjtI-9_jdJctcBrJ85s38_yy7AWBKwKSXe9mHa4IpZQISgg8yjYEalIIXsPjbANAZVFxys-y8xC2AFCXFTzNzigTNZRSbrLpqxv3QRszaG9bzM2Akw3R73OP_TLqiCH_YWeM1oTcdbnRo7ER83kxI-po3ZzHwbulH3Ljpl3i7t8SaeeIvtPG6jHHGX1vMTzLnnR6DPj8WC-yuw_vv998Km6_fPx88-62MGUpY8FAaAm05TWrWm64bqGimnVGt6KWyLluSlkLhrTpEBnvGiEoJqOmlVQ2NbvI3h50d0szYWtwjl6PauftpP1eOW3Vv53ZDqp3vxQTUvKSJIE3RwHvfi4Yokq_YnAc9YxuCYowUZYEaLnuuvwP3brFz8nePZXu5BwSdX2gjHcheOxOxxBQa5RqjVI9RJkmXv3t4cT_yS4Br4_AOnmSS3qUqZqK1cXLA7EN0fkTwqkEIYA8KHTaKd17G9TdNwpEQGpWACX7DfW1ulk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365796440</pqid></control><display><type>article</type><title>Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Giuffre, Anthony J. ; Hamm, Laura M. ; Han, Nizhou ; De Yoreo, James J. ; Dove, Patricia M.</creator><creatorcontrib>Giuffre, Anthony J. ; Hamm, Laura M. ; Han, Nizhou ; De Yoreo, James J. ; Dove, Patricia M.</creatorcontrib><description>Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1222162110</identifier><identifier>PMID: 23690577</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alginates ; Biomineralogy ; Calcification, Physiologic - physiology ; Calcite ; Calcium Carbonate - chemistry ; Crystallization ; Crystals ; Electroplating ; Free energy ; Functional groups ; Kinetics ; Microscopy, Electron, Scanning ; Models, Chemical ; Nucleation ; Physical Sciences ; Physiological regulation ; Polysaccharides ; Polysaccharides - chemistry ; Proteins ; Silicon ; Substrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (23), p.9261-9266</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 4, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93</citedby><cites>FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42706601$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42706601$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23690577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giuffre, Anthony J.</creatorcontrib><creatorcontrib>Hamm, Laura M.</creatorcontrib><creatorcontrib>Han, Nizhou</creatorcontrib><creatorcontrib>De Yoreo, James J.</creatorcontrib><creatorcontrib>Dove, Patricia M.</creatorcontrib><title>Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.</description><subject>Alginates</subject><subject>Biomineralogy</subject><subject>Calcification, Physiologic - physiology</subject><subject>Calcite</subject><subject>Calcium Carbonate - chemistry</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Electroplating</subject><subject>Free energy</subject><subject>Functional groups</subject><subject>Kinetics</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Chemical</subject><subject>Nucleation</subject><subject>Physical Sciences</subject><subject>Physiological regulation</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>Proteins</subject><subject>Silicon</subject><subject>Substrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxSMEotvCmRMQqRcuaccfsZMLEqr4kiqBBD1bjjNJvCTxYjtI-9_jdJctcBrJ85s38_yy7AWBKwKSXe9mHa4IpZQISgg8yjYEalIIXsPjbANAZVFxys-y8xC2AFCXFTzNzigTNZRSbrLpqxv3QRszaG9bzM2Akw3R73OP_TLqiCH_YWeM1oTcdbnRo7ER83kxI-po3ZzHwbulH3Ljpl3i7t8SaeeIvtPG6jHHGX1vMTzLnnR6DPj8WC-yuw_vv998Km6_fPx88-62MGUpY8FAaAm05TWrWm64bqGimnVGt6KWyLluSlkLhrTpEBnvGiEoJqOmlVQ2NbvI3h50d0szYWtwjl6PauftpP1eOW3Vv53ZDqp3vxQTUvKSJIE3RwHvfi4Yokq_YnAc9YxuCYowUZYEaLnuuvwP3brFz8nePZXu5BwSdX2gjHcheOxOxxBQa5RqjVI9RJkmXv3t4cT_yS4Br4_AOnmSS3qUqZqK1cXLA7EN0fkTwqkEIYA8KHTaKd17G9TdNwpEQGpWACX7DfW1ulk</recordid><startdate>20130604</startdate><enddate>20130604</enddate><creator>Giuffre, Anthony J.</creator><creator>Hamm, Laura M.</creator><creator>Han, Nizhou</creator><creator>De Yoreo, James J.</creator><creator>Dove, Patricia M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130604</creationdate><title>Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies</title><author>Giuffre, Anthony J. ; Hamm, Laura M. ; Han, Nizhou ; De Yoreo, James J. ; Dove, Patricia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alginates</topic><topic>Biomineralogy</topic><topic>Calcification, Physiologic - physiology</topic><topic>Calcite</topic><topic>Calcium Carbonate - chemistry</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Electroplating</topic><topic>Free energy</topic><topic>Functional groups</topic><topic>Kinetics</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Chemical</topic><topic>Nucleation</topic><topic>Physical Sciences</topic><topic>Physiological regulation</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>Proteins</topic><topic>Silicon</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giuffre, Anthony J.</creatorcontrib><creatorcontrib>Hamm, Laura M.</creatorcontrib><creatorcontrib>Han, Nizhou</creatorcontrib><creatorcontrib>De Yoreo, James J.</creatorcontrib><creatorcontrib>Dove, Patricia M.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giuffre, Anthony J.</au><au>Hamm, Laura M.</au><au>Han, Nizhou</au><au>De Yoreo, James J.</au><au>Dove, Patricia M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-06-04</date><risdate>2013</risdate><volume>110</volume><issue>23</issue><spage>9261</spage><epage>9266</epage><pages>9261-9266</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23690577</pmid><doi>10.1073/pnas.1222162110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (23), p.9261-9266 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3677451 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Alginates Biomineralogy Calcification, Physiologic - physiology Calcite Calcium Carbonate - chemistry Crystallization Crystals Electroplating Free energy Functional groups Kinetics Microscopy, Electron, Scanning Models, Chemical Nucleation Physical Sciences Physiological regulation Polysaccharides Polysaccharides - chemistry Proteins Silicon Substrates |
title | Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polysaccharide%20chemistry%20regulates%20kinetics%20of%20calcite%20nucleation%20through%20competition%20of%20interfacial%20energies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Giuffre,%20Anthony%20J.&rft.date=2013-06-04&rft.volume=110&rft.issue=23&rft.spage=9261&rft.epage=9266&rft.pages=9261-9266&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1222162110&rft_dat=%3Cjstor_pubme%3E42706601%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-306a702d4938d4c4ad082a3fcad697e44ab57963e2bfee34fb662e842cd727b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365796440&rft_id=info:pmid/23690577&rft_jstor_id=42706601&rfr_iscdi=true |