Loading…
GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI
We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary...
Saved in:
Published in: | Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-9 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63 |
container_end_page | 9 |
container_issue | 2013 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2013 |
creator | Swastika, Windra Masuda, Yoshitada Xu, Rui Kido, Shoji Chen, Yen-Wei Haneishi, Hideaki |
description | We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples. |
doi_str_mv | 10.1155/2013/482941 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3677614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1370124058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhq2qVfnqiXOrHBEo4HHs2LkgLbtAkZYPtRy4WRPH2XWVxEucpeXfYxS6oqeebHkePzN6h5B9oMcAQpwwCtkJV6zg8IFsg-QqzSWoj5s7fdgiOyH8olSAFPCZbLFMKmCSb5P55c0svZtO0jMMtkp-Dji4MDiDTXLtK9u4bpH4Opk5XC17XLTxdXC-S87_DD2aIX6pe98mfJZc_7jaI59qbIL98nbukvuL8_vp93R-e3k1ncxTIygfUpujKTOsjC0VckBT85rVoACVyItCSWOghAIrBjlDgJIWIKCoIqpKm2e75HTUrtZla6Omi7M0etW7Fvtn7dHpfyudW-qFf9JZLmUOPAoO3gS9f1zbMOjWBWObBjvr10FDJikwToWK6NGImt6H0Nt60waofo1fv8avx_gj_e39ZBv2b94ROByBpesq_O3-Y_s6wjYitsYNzOMWBcteAEQclbc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370124058</pqid></control><display><type>article</type><title>GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI</title><source>Wiley Online Library Open Access</source><creator>Swastika, Windra ; Masuda, Yoshitada ; Xu, Rui ; Kido, Shoji ; Chen, Yen-Wei ; Haneishi, Hideaki</creator><contributor>Chen, Chung-Ming</contributor><creatorcontrib>Swastika, Windra ; Masuda, Yoshitada ; Xu, Rui ; Kido, Shoji ; Chen, Yen-Wei ; Haneishi, Hideaki ; Chen, Chung-Ming</creatorcontrib><description>We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2013/482941</identifier><identifier>PMID: 23781274</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Adult ; Computational Biology ; Computer Simulation ; Diaphragm - physiology ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - statistics & numerical data ; Imaging, Three-Dimensional - methods ; Imaging, Three-Dimensional - statistics & numerical data ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics & numerical data ; Middle Aged ; Models, Biological ; Models, Statistical ; Movement - physiology ; Principal Component Analysis ; Respiratory Mechanics ; Young Adult</subject><ispartof>Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-9</ispartof><rights>Copyright © 2013 Windra Swastika et al.</rights><rights>Copyright © 2013 Windra Swastika et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63</citedby><cites>FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63</cites><orcidid>0000-0003-4210-7001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23781274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Chung-Ming</contributor><creatorcontrib>Swastika, Windra</creatorcontrib><creatorcontrib>Masuda, Yoshitada</creatorcontrib><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Kido, Shoji</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Haneishi, Hideaki</creatorcontrib><title>GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.</description><subject>Adult</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Diaphragm - physiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Imaging, Three-Dimensional - statistics & numerical data</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Movement - physiology</subject><subject>Principal Component Analysis</subject><subject>Respiratory Mechanics</subject><subject>Young Adult</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3DAQhq2qVfnqiXOrHBEo4HHs2LkgLbtAkZYPtRy4WRPH2XWVxEucpeXfYxS6oqeebHkePzN6h5B9oMcAQpwwCtkJV6zg8IFsg-QqzSWoj5s7fdgiOyH8olSAFPCZbLFMKmCSb5P55c0svZtO0jMMtkp-Dji4MDiDTXLtK9u4bpH4Opk5XC17XLTxdXC-S87_DD2aIX6pe98mfJZc_7jaI59qbIL98nbukvuL8_vp93R-e3k1ncxTIygfUpujKTOsjC0VckBT85rVoACVyItCSWOghAIrBjlDgJIWIKCoIqpKm2e75HTUrtZla6Omi7M0etW7Fvtn7dHpfyudW-qFf9JZLmUOPAoO3gS9f1zbMOjWBWObBjvr10FDJikwToWK6NGImt6H0Nt60waofo1fv8avx_gj_e39ZBv2b94ROByBpesq_O3-Y_s6wjYitsYNzOMWBcteAEQclbc</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Swastika, Windra</creator><creator>Masuda, Yoshitada</creator><creator>Xu, Rui</creator><creator>Kido, Shoji</creator><creator>Chen, Yen-Wei</creator><creator>Haneishi, Hideaki</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4210-7001</orcidid></search><sort><creationdate>20130101</creationdate><title>GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI</title><author>Swastika, Windra ; Masuda, Yoshitada ; Xu, Rui ; Kido, Shoji ; Chen, Yen-Wei ; Haneishi, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Diaphragm - physiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Imaging, Three-Dimensional - statistics & numerical data</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Movement - physiology</topic><topic>Principal Component Analysis</topic><topic>Respiratory Mechanics</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swastika, Windra</creatorcontrib><creatorcontrib>Masuda, Yoshitada</creatorcontrib><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Kido, Shoji</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Haneishi, Hideaki</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swastika, Windra</au><au>Masuda, Yoshitada</au><au>Xu, Rui</au><au>Kido, Shoji</au><au>Chen, Yen-Wei</au><au>Haneishi, Hideaki</au><au>Chen, Chung-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>23781274</pmid><doi>10.1155/2013/482941</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4210-7001</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-9 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3677614 |
source | Wiley Online Library Open Access |
subjects | Adult Computational Biology Computer Simulation Diaphragm - physiology Humans Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - statistics & numerical data Imaging, Three-Dimensional - methods Imaging, Three-Dimensional - statistics & numerical data Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - statistics & numerical data Middle Aged Models, Biological Models, Statistical Movement - physiology Principal Component Analysis Respiratory Mechanics Young Adult |
title | GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GND-PCA-Based%20Statistical%20Modeling%20of%20Diaphragm%20Motion%20Extracted%20from%204D%20MRI&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Swastika,%20Windra&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2013/482941&rft_dat=%3Cproquest_pubme%3E1370124058%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1370124058&rft_id=info:pmid/23781274&rfr_iscdi=true |