Loading…

GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI

We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary...

Full description

Saved in:
Bibliographic Details
Published in:Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-9
Main Authors: Swastika, Windra, Masuda, Yoshitada, Xu, Rui, Kido, Shoji, Chen, Yen-Wei, Haneishi, Hideaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63
cites cdi_FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63
container_end_page 9
container_issue 2013
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2013
creator Swastika, Windra
Masuda, Yoshitada
Xu, Rui
Kido, Shoji
Chen, Yen-Wei
Haneishi, Hideaki
description We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.
doi_str_mv 10.1155/2013/482941
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3677614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1370124058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhq2qVfnqiXOrHBEo4HHs2LkgLbtAkZYPtRy4WRPH2XWVxEucpeXfYxS6oqeebHkePzN6h5B9oMcAQpwwCtkJV6zg8IFsg-QqzSWoj5s7fdgiOyH8olSAFPCZbLFMKmCSb5P55c0svZtO0jMMtkp-Dji4MDiDTXLtK9u4bpH4Opk5XC17XLTxdXC-S87_DD2aIX6pe98mfJZc_7jaI59qbIL98nbukvuL8_vp93R-e3k1ncxTIygfUpujKTOsjC0VckBT85rVoACVyItCSWOghAIrBjlDgJIWIKCoIqpKm2e75HTUrtZla6Omi7M0etW7Fvtn7dHpfyudW-qFf9JZLmUOPAoO3gS9f1zbMOjWBWObBjvr10FDJikwToWK6NGImt6H0Nt60waofo1fv8avx_gj_e39ZBv2b94ROByBpesq_O3-Y_s6wjYitsYNzOMWBcteAEQclbc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370124058</pqid></control><display><type>article</type><title>GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI</title><source>Wiley Online Library Open Access</source><creator>Swastika, Windra ; Masuda, Yoshitada ; Xu, Rui ; Kido, Shoji ; Chen, Yen-Wei ; Haneishi, Hideaki</creator><contributor>Chen, Chung-Ming</contributor><creatorcontrib>Swastika, Windra ; Masuda, Yoshitada ; Xu, Rui ; Kido, Shoji ; Chen, Yen-Wei ; Haneishi, Hideaki ; Chen, Chung-Ming</creatorcontrib><description>We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2013/482941</identifier><identifier>PMID: 23781274</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Adult ; Computational Biology ; Computer Simulation ; Diaphragm - physiology ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Imaging, Three-Dimensional - methods ; Imaging, Three-Dimensional - statistics &amp; numerical data ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Middle Aged ; Models, Biological ; Models, Statistical ; Movement - physiology ; Principal Component Analysis ; Respiratory Mechanics ; Young Adult</subject><ispartof>Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-9</ispartof><rights>Copyright © 2013 Windra Swastika et al.</rights><rights>Copyright © 2013 Windra Swastika et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63</citedby><cites>FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63</cites><orcidid>0000-0003-4210-7001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23781274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Chung-Ming</contributor><creatorcontrib>Swastika, Windra</creatorcontrib><creatorcontrib>Masuda, Yoshitada</creatorcontrib><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Kido, Shoji</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Haneishi, Hideaki</creatorcontrib><title>GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.</description><subject>Adult</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Diaphragm - physiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Imaging, Three-Dimensional - statistics &amp; numerical data</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Movement - physiology</subject><subject>Principal Component Analysis</subject><subject>Respiratory Mechanics</subject><subject>Young Adult</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3DAQhq2qVfnqiXOrHBEo4HHs2LkgLbtAkZYPtRy4WRPH2XWVxEucpeXfYxS6oqeebHkePzN6h5B9oMcAQpwwCtkJV6zg8IFsg-QqzSWoj5s7fdgiOyH8olSAFPCZbLFMKmCSb5P55c0svZtO0jMMtkp-Dji4MDiDTXLtK9u4bpH4Opk5XC17XLTxdXC-S87_DD2aIX6pe98mfJZc_7jaI59qbIL98nbukvuL8_vp93R-e3k1ncxTIygfUpujKTOsjC0VckBT85rVoACVyItCSWOghAIrBjlDgJIWIKCoIqpKm2e75HTUrtZla6Omi7M0etW7Fvtn7dHpfyudW-qFf9JZLmUOPAoO3gS9f1zbMOjWBWObBjvr10FDJikwToWK6NGImt6H0Nt60waofo1fv8avx_gj_e39ZBv2b94ROByBpesq_O3-Y_s6wjYitsYNzOMWBcteAEQclbc</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Swastika, Windra</creator><creator>Masuda, Yoshitada</creator><creator>Xu, Rui</creator><creator>Kido, Shoji</creator><creator>Chen, Yen-Wei</creator><creator>Haneishi, Hideaki</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4210-7001</orcidid></search><sort><creationdate>20130101</creationdate><title>GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI</title><author>Swastika, Windra ; Masuda, Yoshitada ; Xu, Rui ; Kido, Shoji ; Chen, Yen-Wei ; Haneishi, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Diaphragm - physiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Imaging, Three-Dimensional - statistics &amp; numerical data</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Movement - physiology</topic><topic>Principal Component Analysis</topic><topic>Respiratory Mechanics</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swastika, Windra</creatorcontrib><creatorcontrib>Masuda, Yoshitada</creatorcontrib><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Kido, Shoji</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Haneishi, Hideaki</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swastika, Windra</au><au>Masuda, Yoshitada</au><au>Xu, Rui</au><au>Kido, Shoji</au><au>Chen, Yen-Wei</au><au>Haneishi, Hideaki</au><au>Chen, Chung-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>23781274</pmid><doi>10.1155/2013/482941</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4210-7001</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-9
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3677614
source Wiley Online Library Open Access
subjects Adult
Computational Biology
Computer Simulation
Diaphragm - physiology
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - statistics & numerical data
Imaging, Three-Dimensional - methods
Imaging, Three-Dimensional - statistics & numerical data
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - statistics & numerical data
Middle Aged
Models, Biological
Models, Statistical
Movement - physiology
Principal Component Analysis
Respiratory Mechanics
Young Adult
title GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GND-PCA-Based%20Statistical%20Modeling%20of%20Diaphragm%20Motion%20Extracted%20from%204D%20MRI&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Swastika,%20Windra&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2013/482941&rft_dat=%3Cproquest_pubme%3E1370124058%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-e6acb3adceb8a41acf4f2f181a8569987cc1b19ad2162a11b091519d41a8be63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1370124058&rft_id=info:pmid/23781274&rfr_iscdi=true