Loading…

Proteasome overload is a common stress factor in multiple forms of inherited retinal degeneration

Inherited retinal degenerations, caused by mutations in over 100 individual genes, affect approximately 2 million people worldwide. Many of the underlying mutations cause protein misfolding or mistargeting in affected photoreceptors. This places an increased burden on the protein folding and degrada...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-06, Vol.110 (24), p.9986-9991
Main Authors: Lobanova, Ekaterina S., Finkelstein, Stella, Skiba, Nikolai P., Arshavsky, Vadim Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inherited retinal degenerations, caused by mutations in over 100 individual genes, affect approximately 2 million people worldwide. Many of the underlying mutations cause protein misfolding or mistargeting in affected photoreceptors. This places an increased burden on the protein folding and degradation machinery, which may trigger cell death. We analyzed how these cellular functions are affected in degenerating rods of the transducin γ-subunit (Gγ ₁) knockout mouse. These rods produce large amounts of transducin β-subunit (Gβ ₁), which cannot fold without Gγ ₁ and undergoes intracellular proteolysis instead of forming a transducin βγ-subunit complex. Our data revealed that the most critical pathobiological factor leading to photoreceptor cell death in these animals is insufficient capacity of proteasomes to process abnormally large amounts of misfolded protein. A decrease in the Gβ ₁ production in Gγ ₁ knockout rods resulted in a significant reduction in proteasomal overload and caused a striking reversal of photoreceptor degeneration. We further demonstrated that a similar proteasomal overload takes place in photoreceptors of other mutant mice where retinal degeneration has been ascribed to protein mistargeting or misfolding, but not in mice whose photoreceptor degenerate as a result of abnormal phototransduction. These results establish the prominence of proteasomal insufficiency across multiple degenerative diseases of the retina, thereby positioning proteasomes as a promising therapeutic target for treating these debilitating conditions.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1305521110