Loading…

High-throughput protein purification and quality assessment for crystallization

The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for...

Full description

Saved in:
Bibliographic Details
Published in:Methods (San Diego, Calif.) Calif.), 2011-09, Vol.55 (1), p.12-28
Main Authors: Kim, Youngchang, Babnigg, Gyorgy, Jedrzejczak, Robert, Eschenfeldt, William H., Li, Hui, Maltseva, Natalia, Hatzos-Skintges, Catherine, Gu, Minyi, Makowska-Grzyska, Magdalena, Wu, Ruiying, An, Hao, Chhor, Gekleng, Joachimiak, Andrzej
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833
cites cdi_FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833
container_end_page 28
container_issue 1
container_start_page 12
container_title Methods (San Diego, Calif.)
container_volume 55
creator Kim, Youngchang
Babnigg, Gyorgy
Jedrzejczak, Robert
Eschenfeldt, William H.
Li, Hui
Maltseva, Natalia
Hatzos-Skintges, Catherine
Gu, Minyi
Makowska-Grzyska, Magdalena
Wu, Ruiying
An, Hao
Chhor, Gekleng
Joachimiak, Andrzej
description The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease [1]; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.
doi_str_mv 10.1016/j.ymeth.2011.07.010
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3690762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202311001605</els_id><sourcerecordid>898508254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eoh_wC5BQbpwSZuw4cQ4goQpapEq9wNlynMnGqyRObafS8uvJdksFF04z0jzzzsfL2DuEAgGrj_viMFEaCg6IBdQFILxg5wiNzBsU8PKYl1XOgYszdhHjHgCQ1-o1O-PYQM1Vec7ubtxuyNMQ_LobljVlS_CJ3Jwta3C9syY5P2dm7rL71YwuHTITI8U40Zyy3ofMhkNMZhzdr0f0DXvVmzHS26d4yX5--_rj6ia_vbv-fvXlNreSlylvm4YjYilMz0VPUkEpqgqwA6MqbGUlSyk5chDSdi1vRNkKAFWDIct7JcQl-3zSXdZ2os5u6wQz6iW4yYSD9sbpfyuzG_TOP2hRbadXfBP48CQQ_P1KMenJRUvjaGbya9SqURIUl-VGihNpg48xUP88BUEfndB7_eiEPjqhodabE1vX-78XfO758_oN-HQCaHvTg6Ogo3U0W-pcIJt0591_B_wGxzmcsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898508254</pqid></control><display><type>article</type><title>High-throughput protein purification and quality assessment for crystallization</title><source>Elsevier</source><creator>Kim, Youngchang ; Babnigg, Gyorgy ; Jedrzejczak, Robert ; Eschenfeldt, William H. ; Li, Hui ; Maltseva, Natalia ; Hatzos-Skintges, Catherine ; Gu, Minyi ; Makowska-Grzyska, Magdalena ; Wu, Ruiying ; An, Hao ; Chhor, Gekleng ; Joachimiak, Andrzej</creator><creatorcontrib>Kim, Youngchang ; Babnigg, Gyorgy ; Jedrzejczak, Robert ; Eschenfeldt, William H. ; Li, Hui ; Maltseva, Natalia ; Hatzos-Skintges, Catherine ; Gu, Minyi ; Makowska-Grzyska, Magdalena ; Wu, Ruiying ; An, Hao ; Chhor, Gekleng ; Joachimiak, Andrzej</creatorcontrib><description>The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease [1]; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2011.07.010</identifier><identifier>PMID: 21907284</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Automation, Laboratory ; Chromatography, Affinity - methods ; Chromatography, Gel - methods ; Crystallization ; Crystallization screening ; Crystallography, X-Ray - methods ; Domain design ; Endopeptidases - metabolism ; Escherichia coli - genetics ; Expression vectors ; Gene cloning ; High-Throughput Screening Assays ; Humans ; Magnetic Resonance Spectroscopy ; Protein Folding ; Protein purification ; Proteomics - methods ; Quality assessment ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics</subject><ispartof>Methods (San Diego, Calif.), 2011-09, Vol.55 (1), p.12-28</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833</citedby><cites>FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21907284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Youngchang</creatorcontrib><creatorcontrib>Babnigg, Gyorgy</creatorcontrib><creatorcontrib>Jedrzejczak, Robert</creatorcontrib><creatorcontrib>Eschenfeldt, William H.</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Maltseva, Natalia</creatorcontrib><creatorcontrib>Hatzos-Skintges, Catherine</creatorcontrib><creatorcontrib>Gu, Minyi</creatorcontrib><creatorcontrib>Makowska-Grzyska, Magdalena</creatorcontrib><creatorcontrib>Wu, Ruiying</creatorcontrib><creatorcontrib>An, Hao</creatorcontrib><creatorcontrib>Chhor, Gekleng</creatorcontrib><creatorcontrib>Joachimiak, Andrzej</creatorcontrib><title>High-throughput protein purification and quality assessment for crystallization</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease [1]; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.</description><subject>Automation, Laboratory</subject><subject>Chromatography, Affinity - methods</subject><subject>Chromatography, Gel - methods</subject><subject>Crystallization</subject><subject>Crystallization screening</subject><subject>Crystallography, X-Ray - methods</subject><subject>Domain design</subject><subject>Endopeptidases - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Expression vectors</subject><subject>Gene cloning</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Protein Folding</subject><subject>Protein purification</subject><subject>Proteomics - methods</subject><subject>Quality assessment</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0Eoh_wC5BQbpwSZuw4cQ4goQpapEq9wNlynMnGqyRObafS8uvJdksFF04z0jzzzsfL2DuEAgGrj_viMFEaCg6IBdQFILxg5wiNzBsU8PKYl1XOgYszdhHjHgCQ1-o1O-PYQM1Vec7ubtxuyNMQ_LobljVlS_CJ3Jwta3C9syY5P2dm7rL71YwuHTITI8U40Zyy3ofMhkNMZhzdr0f0DXvVmzHS26d4yX5--_rj6ia_vbv-fvXlNreSlylvm4YjYilMz0VPUkEpqgqwA6MqbGUlSyk5chDSdi1vRNkKAFWDIct7JcQl-3zSXdZ2os5u6wQz6iW4yYSD9sbpfyuzG_TOP2hRbadXfBP48CQQ_P1KMenJRUvjaGbya9SqURIUl-VGihNpg48xUP88BUEfndB7_eiEPjqhodabE1vX-78XfO758_oN-HQCaHvTg6Ogo3U0W-pcIJt0591_B_wGxzmcsg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Kim, Youngchang</creator><creator>Babnigg, Gyorgy</creator><creator>Jedrzejczak, Robert</creator><creator>Eschenfeldt, William H.</creator><creator>Li, Hui</creator><creator>Maltseva, Natalia</creator><creator>Hatzos-Skintges, Catherine</creator><creator>Gu, Minyi</creator><creator>Makowska-Grzyska, Magdalena</creator><creator>Wu, Ruiying</creator><creator>An, Hao</creator><creator>Chhor, Gekleng</creator><creator>Joachimiak, Andrzej</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110901</creationdate><title>High-throughput protein purification and quality assessment for crystallization</title><author>Kim, Youngchang ; Babnigg, Gyorgy ; Jedrzejczak, Robert ; Eschenfeldt, William H. ; Li, Hui ; Maltseva, Natalia ; Hatzos-Skintges, Catherine ; Gu, Minyi ; Makowska-Grzyska, Magdalena ; Wu, Ruiying ; An, Hao ; Chhor, Gekleng ; Joachimiak, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Automation, Laboratory</topic><topic>Chromatography, Affinity - methods</topic><topic>Chromatography, Gel - methods</topic><topic>Crystallization</topic><topic>Crystallization screening</topic><topic>Crystallography, X-Ray - methods</topic><topic>Domain design</topic><topic>Endopeptidases - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Expression vectors</topic><topic>Gene cloning</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Protein Folding</topic><topic>Protein purification</topic><topic>Proteomics - methods</topic><topic>Quality assessment</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngchang</creatorcontrib><creatorcontrib>Babnigg, Gyorgy</creatorcontrib><creatorcontrib>Jedrzejczak, Robert</creatorcontrib><creatorcontrib>Eschenfeldt, William H.</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Maltseva, Natalia</creatorcontrib><creatorcontrib>Hatzos-Skintges, Catherine</creatorcontrib><creatorcontrib>Gu, Minyi</creatorcontrib><creatorcontrib>Makowska-Grzyska, Magdalena</creatorcontrib><creatorcontrib>Wu, Ruiying</creatorcontrib><creatorcontrib>An, Hao</creatorcontrib><creatorcontrib>Chhor, Gekleng</creatorcontrib><creatorcontrib>Joachimiak, Andrzej</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Youngchang</au><au>Babnigg, Gyorgy</au><au>Jedrzejczak, Robert</au><au>Eschenfeldt, William H.</au><au>Li, Hui</au><au>Maltseva, Natalia</au><au>Hatzos-Skintges, Catherine</au><au>Gu, Minyi</au><au>Makowska-Grzyska, Magdalena</au><au>Wu, Ruiying</au><au>An, Hao</au><au>Chhor, Gekleng</au><au>Joachimiak, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput protein purification and quality assessment for crystallization</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>55</volume><issue>1</issue><spage>12</spage><epage>28</epage><pages>12-28</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease [1]; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21907284</pmid><doi>10.1016/j.ymeth.2011.07.010</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1046-2023
ispartof Methods (San Diego, Calif.), 2011-09, Vol.55 (1), p.12-28
issn 1046-2023
1095-9130
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3690762
source Elsevier
subjects Automation, Laboratory
Chromatography, Affinity - methods
Chromatography, Gel - methods
Crystallization
Crystallization screening
Crystallography, X-Ray - methods
Domain design
Endopeptidases - metabolism
Escherichia coli - genetics
Expression vectors
Gene cloning
High-Throughput Screening Assays
Humans
Magnetic Resonance Spectroscopy
Protein Folding
Protein purification
Proteomics - methods
Quality assessment
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
title High-throughput protein purification and quality assessment for crystallization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20protein%20purification%20and%20quality%20assessment%20for%20crystallization&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Kim,%20Youngchang&rft.date=2011-09-01&rft.volume=55&rft.issue=1&rft.spage=12&rft.epage=28&rft.pages=12-28&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2011.07.010&rft_dat=%3Cproquest_pubme%3E898508254%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=898508254&rft_id=info:pmid/21907284&rfr_iscdi=true