Loading…
High-throughput protein purification and quality assessment for crystallization
The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for...
Saved in:
Published in: | Methods (San Diego, Calif.) Calif.), 2011-09, Vol.55 (1), p.12-28 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833 |
container_end_page | 28 |
container_issue | 1 |
container_start_page | 12 |
container_title | Methods (San Diego, Calif.) |
container_volume | 55 |
creator | Kim, Youngchang Babnigg, Gyorgy Jedrzejczak, Robert Eschenfeldt, William H. Li, Hui Maltseva, Natalia Hatzos-Skintges, Catherine Gu, Minyi Makowska-Grzyska, Magdalena Wu, Ruiying An, Hao Chhor, Gekleng Joachimiak, Andrzej |
description | The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease [1]; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter. |
doi_str_mv | 10.1016/j.ymeth.2011.07.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3690762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202311001605</els_id><sourcerecordid>898508254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eoh_wC5BQbpwSZuw4cQ4goQpapEq9wNlynMnGqyRObafS8uvJdksFF04z0jzzzsfL2DuEAgGrj_viMFEaCg6IBdQFILxg5wiNzBsU8PKYl1XOgYszdhHjHgCQ1-o1O-PYQM1Vec7ubtxuyNMQ_LobljVlS_CJ3Jwta3C9syY5P2dm7rL71YwuHTITI8U40Zyy3ofMhkNMZhzdr0f0DXvVmzHS26d4yX5--_rj6ia_vbv-fvXlNreSlylvm4YjYilMz0VPUkEpqgqwA6MqbGUlSyk5chDSdi1vRNkKAFWDIct7JcQl-3zSXdZ2os5u6wQz6iW4yYSD9sbpfyuzG_TOP2hRbadXfBP48CQQ_P1KMenJRUvjaGbya9SqURIUl-VGihNpg48xUP88BUEfndB7_eiEPjqhodabE1vX-78XfO758_oN-HQCaHvTg6Ogo3U0W-pcIJt0591_B_wGxzmcsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898508254</pqid></control><display><type>article</type><title>High-throughput protein purification and quality assessment for crystallization</title><source>Elsevier</source><creator>Kim, Youngchang ; Babnigg, Gyorgy ; Jedrzejczak, Robert ; Eschenfeldt, William H. ; Li, Hui ; Maltseva, Natalia ; Hatzos-Skintges, Catherine ; Gu, Minyi ; Makowska-Grzyska, Magdalena ; Wu, Ruiying ; An, Hao ; Chhor, Gekleng ; Joachimiak, Andrzej</creator><creatorcontrib>Kim, Youngchang ; Babnigg, Gyorgy ; Jedrzejczak, Robert ; Eschenfeldt, William H. ; Li, Hui ; Maltseva, Natalia ; Hatzos-Skintges, Catherine ; Gu, Minyi ; Makowska-Grzyska, Magdalena ; Wu, Ruiying ; An, Hao ; Chhor, Gekleng ; Joachimiak, Andrzej</creatorcontrib><description>The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease [1]; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2011.07.010</identifier><identifier>PMID: 21907284</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Automation, Laboratory ; Chromatography, Affinity - methods ; Chromatography, Gel - methods ; Crystallization ; Crystallization screening ; Crystallography, X-Ray - methods ; Domain design ; Endopeptidases - metabolism ; Escherichia coli - genetics ; Expression vectors ; Gene cloning ; High-Throughput Screening Assays ; Humans ; Magnetic Resonance Spectroscopy ; Protein Folding ; Protein purification ; Proteomics - methods ; Quality assessment ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics</subject><ispartof>Methods (San Diego, Calif.), 2011-09, Vol.55 (1), p.12-28</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833</citedby><cites>FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21907284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Youngchang</creatorcontrib><creatorcontrib>Babnigg, Gyorgy</creatorcontrib><creatorcontrib>Jedrzejczak, Robert</creatorcontrib><creatorcontrib>Eschenfeldt, William H.</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Maltseva, Natalia</creatorcontrib><creatorcontrib>Hatzos-Skintges, Catherine</creatorcontrib><creatorcontrib>Gu, Minyi</creatorcontrib><creatorcontrib>Makowska-Grzyska, Magdalena</creatorcontrib><creatorcontrib>Wu, Ruiying</creatorcontrib><creatorcontrib>An, Hao</creatorcontrib><creatorcontrib>Chhor, Gekleng</creatorcontrib><creatorcontrib>Joachimiak, Andrzej</creatorcontrib><title>High-throughput protein purification and quality assessment for crystallization</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease [1]; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.</description><subject>Automation, Laboratory</subject><subject>Chromatography, Affinity - methods</subject><subject>Chromatography, Gel - methods</subject><subject>Crystallization</subject><subject>Crystallization screening</subject><subject>Crystallography, X-Ray - methods</subject><subject>Domain design</subject><subject>Endopeptidases - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Expression vectors</subject><subject>Gene cloning</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Protein Folding</subject><subject>Protein purification</subject><subject>Proteomics - methods</subject><subject>Quality assessment</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0Eoh_wC5BQbpwSZuw4cQ4goQpapEq9wNlynMnGqyRObafS8uvJdksFF04z0jzzzsfL2DuEAgGrj_viMFEaCg6IBdQFILxg5wiNzBsU8PKYl1XOgYszdhHjHgCQ1-o1O-PYQM1Vec7ubtxuyNMQ_LobljVlS_CJ3Jwta3C9syY5P2dm7rL71YwuHTITI8U40Zyy3ofMhkNMZhzdr0f0DXvVmzHS26d4yX5--_rj6ia_vbv-fvXlNreSlylvm4YjYilMz0VPUkEpqgqwA6MqbGUlSyk5chDSdi1vRNkKAFWDIct7JcQl-3zSXdZ2os5u6wQz6iW4yYSD9sbpfyuzG_TOP2hRbadXfBP48CQQ_P1KMenJRUvjaGbya9SqURIUl-VGihNpg48xUP88BUEfndB7_eiEPjqhodabE1vX-78XfO758_oN-HQCaHvTg6Ogo3U0W-pcIJt0591_B_wGxzmcsg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Kim, Youngchang</creator><creator>Babnigg, Gyorgy</creator><creator>Jedrzejczak, Robert</creator><creator>Eschenfeldt, William H.</creator><creator>Li, Hui</creator><creator>Maltseva, Natalia</creator><creator>Hatzos-Skintges, Catherine</creator><creator>Gu, Minyi</creator><creator>Makowska-Grzyska, Magdalena</creator><creator>Wu, Ruiying</creator><creator>An, Hao</creator><creator>Chhor, Gekleng</creator><creator>Joachimiak, Andrzej</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110901</creationdate><title>High-throughput protein purification and quality assessment for crystallization</title><author>Kim, Youngchang ; Babnigg, Gyorgy ; Jedrzejczak, Robert ; Eschenfeldt, William H. ; Li, Hui ; Maltseva, Natalia ; Hatzos-Skintges, Catherine ; Gu, Minyi ; Makowska-Grzyska, Magdalena ; Wu, Ruiying ; An, Hao ; Chhor, Gekleng ; Joachimiak, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Automation, Laboratory</topic><topic>Chromatography, Affinity - methods</topic><topic>Chromatography, Gel - methods</topic><topic>Crystallization</topic><topic>Crystallization screening</topic><topic>Crystallography, X-Ray - methods</topic><topic>Domain design</topic><topic>Endopeptidases - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Expression vectors</topic><topic>Gene cloning</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Protein Folding</topic><topic>Protein purification</topic><topic>Proteomics - methods</topic><topic>Quality assessment</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngchang</creatorcontrib><creatorcontrib>Babnigg, Gyorgy</creatorcontrib><creatorcontrib>Jedrzejczak, Robert</creatorcontrib><creatorcontrib>Eschenfeldt, William H.</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Maltseva, Natalia</creatorcontrib><creatorcontrib>Hatzos-Skintges, Catherine</creatorcontrib><creatorcontrib>Gu, Minyi</creatorcontrib><creatorcontrib>Makowska-Grzyska, Magdalena</creatorcontrib><creatorcontrib>Wu, Ruiying</creatorcontrib><creatorcontrib>An, Hao</creatorcontrib><creatorcontrib>Chhor, Gekleng</creatorcontrib><creatorcontrib>Joachimiak, Andrzej</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Youngchang</au><au>Babnigg, Gyorgy</au><au>Jedrzejczak, Robert</au><au>Eschenfeldt, William H.</au><au>Li, Hui</au><au>Maltseva, Natalia</au><au>Hatzos-Skintges, Catherine</au><au>Gu, Minyi</au><au>Makowska-Grzyska, Magdalena</au><au>Wu, Ruiying</au><au>An, Hao</au><au>Chhor, Gekleng</au><au>Joachimiak, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput protein purification and quality assessment for crystallization</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>55</volume><issue>1</issue><spage>12</spage><epage>28</epage><pages>12-28</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease [1]; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21907284</pmid><doi>10.1016/j.ymeth.2011.07.010</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-2023 |
ispartof | Methods (San Diego, Calif.), 2011-09, Vol.55 (1), p.12-28 |
issn | 1046-2023 1095-9130 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3690762 |
source | Elsevier |
subjects | Automation, Laboratory Chromatography, Affinity - methods Chromatography, Gel - methods Crystallization Crystallization screening Crystallography, X-Ray - methods Domain design Endopeptidases - metabolism Escherichia coli - genetics Expression vectors Gene cloning High-Throughput Screening Assays Humans Magnetic Resonance Spectroscopy Protein Folding Protein purification Proteomics - methods Quality assessment Recombinant Proteins - chemistry Recombinant Proteins - genetics |
title | High-throughput protein purification and quality assessment for crystallization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20protein%20purification%20and%20quality%20assessment%20for%20crystallization&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Kim,%20Youngchang&rft.date=2011-09-01&rft.volume=55&rft.issue=1&rft.spage=12&rft.epage=28&rft.pages=12-28&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2011.07.010&rft_dat=%3Cproquest_pubme%3E898508254%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-b99211143af23fe580436601d0a861b565455212035cdb2934b300870aec2f833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=898508254&rft_id=info:pmid/21907284&rfr_iscdi=true |