Loading…

Comparison of the effectiveness of antibody and cell-mediated immunity against inhaled and instilled influenza virus challenge

BACKGROUND: To evaluate immunity against influenza, mouse challenge studies are typically performed by intranasal instillation of a virus suspension to anesthetized animals. This results in an unnatural environment in the lower respiratory tract during infection, and therefore there is some concern...

Full description

Saved in:
Bibliographic Details
Published in:Virology journal 2013-06, Vol.10 (1), p.198-198, Article 198
Main Authors: Rivers, Katie, Bowen, Larry E, Gao, Jin, Yang, Kevin, Trombley, John E, Bohannon, J Kyle, Eichelberger, Maryna C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BACKGROUND: To evaluate immunity against influenza, mouse challenge studies are typically performed by intranasal instillation of a virus suspension to anesthetized animals. This results in an unnatural environment in the lower respiratory tract during infection, and therefore there is some concern that immune mechanisms identified in this model may not reflect those that protect against infectious virus particles delivered directly to the lower respiratory tract as an aerosol. METHOD: To evaluate differences in protection against instilled and inhaled virus, mice were immunized with influenza antigens known to induce antibody or cell-mediated responses and then challenged with 100 LD₅₀A/PR/8/34 (PR8) in the form of aerosol (inhaled) or liquid suspension (instilled). RESULTS: Mice immunized with recombinant adenovirus (Ad) expressing hemagglutinin were protected against weight loss and death in both challenge models, however immunization with Ad expressing nucleoprotein of influenza A (NPA) or M2 resulted in greater protection against inhaled aerosolized virus than virus instilled in liquid suspension. Ad-M2, but not Ad-NPA-immunized mice were protected against a lower instillation challenge dose. CONCLUSIONS: These results demonstrate differences in protection that are dependent on challenge method, and suggest that cell-mediated immunity may be more accurately demonstrated in mouse inhalation studies. Furthermore, the data suggest immune mechanisms generally characterized as incomplete or weak in mouse models using liquid intranasal challenge may offer greater immunity against influenza infection than previously thought.
ISSN:1743-422X
1743-422X
DOI:10.1186/1743-422X-10-198