Loading…
SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments
Identifying which mutation(s) within a given genotype is responsible for an observable phenotype is important in many aspects of molecular biology. Here, we present SigniSite, an online application for subgroup-free residue-level genotype-phenotype correlation. In contrast to similar methods, SigniS...
Saved in:
Published in: | Nucleic acids research 2013-07, Vol.41 (Web Server issue), p.W286-W291 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-5ad8531425788b7ae55619135efa10be16b4cace6e5ac0362b876c7362dc86763 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-5ad8531425788b7ae55619135efa10be16b4cace6e5ac0362b876c7362dc86763 |
container_end_page | W291 |
container_issue | Web Server issue |
container_start_page | W286 |
container_title | Nucleic acids research |
container_volume | 41 |
creator | Jessen, Leon Eyrich Hoof, Ilka Lund, Ole Nielsen, Morten |
description | Identifying which mutation(s) within a given genotype is responsible for an observable phenotype is important in many aspects of molecular biology. Here, we present SigniSite, an online application for subgroup-free residue-level genotype-phenotype correlation. In contrast to similar methods, SigniSite does not require any pre-definition of subgroups or binary classification. Input is a set of protein sequences where each sequence has an associated real number, quantifying a given phenotype. SigniSite will then identify which amino acid residues are significantly associated with the data set phenotype. As output, SigniSite displays a sequence logo, depicting the strength of the phenotype association of each residue and a heat-map identifying 'hot' or 'cold' regions. SigniSite was benchmarked against SPEER, a state-of-the-art method for the prediction of specificity determining positions (SDP) using a set of human immunodeficiency virus protease-inhibitor genotype-phenotype data and corresponding resistance mutation scores from the Stanford University HIV Drug Resistance Database, and a data set of protein families with experimentally annotated SDPs. For both data sets, SigniSite was found to outperform SPEER. SigniSite is available at: http://www.cbs.dtu.dk/services/SigniSite/. |
doi_str_mv | 10.1093/nar/gkt497 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3692133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1371272138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-5ad8531425788b7ae55619135efa10be16b4cace6e5ac0362b876c7362dc86763</originalsourceid><addsrcrecordid>eNpVkUtr3TAQhUVpaW7SbvIDipYl4ESyXnYXhRDygkAXaddClsc3SmXJleRA_n3V3NvQrmZgPs6Zw0HomJJTSnp2Fkw62_4svFdv0IYy2Ta8l-1btCGMiIYS3h2gw5wfCaGcCv4eHbRMScoF36B077bB3bsCX_DtCKG4yVlTXAw4TjhBduMKjYcn8HgLIZbnBZrlYb9hG1MC_8Jn7AJeUixQ57z64hYPOMOvFYIFbHw1mqtB_oDeTcZn-LifR-jH1eX3i5vm7tv17cX5XWOZ6kojzNgJRnkrVNcNyoAQkvaUCZgMJQNQOXBrLEgQxpKaeuiUtKouo-2kkuwIfd3pLusww2irdzJeL8nNJj3raJz-_xLcg97GJ81k31LGqsDnvUCKNUUuenbZgvcmQFyzpkzRVlW0q-jJDrUp5pxgerWhRP8pSdeS9K6kCn_697FX9G8r7DesEpJs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1371272138</pqid></control><display><type>article</type><title>SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments</title><source>PubMed Central</source><source>Oxford Academic Journals (Open Access)</source><creator>Jessen, Leon Eyrich ; Hoof, Ilka ; Lund, Ole ; Nielsen, Morten</creator><creatorcontrib>Jessen, Leon Eyrich ; Hoof, Ilka ; Lund, Ole ; Nielsen, Morten</creatorcontrib><description>Identifying which mutation(s) within a given genotype is responsible for an observable phenotype is important in many aspects of molecular biology. Here, we present SigniSite, an online application for subgroup-free residue-level genotype-phenotype correlation. In contrast to similar methods, SigniSite does not require any pre-definition of subgroups or binary classification. Input is a set of protein sequences where each sequence has an associated real number, quantifying a given phenotype. SigniSite will then identify which amino acid residues are significantly associated with the data set phenotype. As output, SigniSite displays a sequence logo, depicting the strength of the phenotype association of each residue and a heat-map identifying 'hot' or 'cold' regions. SigniSite was benchmarked against SPEER, a state-of-the-art method for the prediction of specificity determining positions (SDP) using a set of human immunodeficiency virus protease-inhibitor genotype-phenotype data and corresponding resistance mutation scores from the Stanford University HIV Drug Resistance Database, and a data set of protein families with experimentally annotated SDPs. For both data sets, SigniSite was found to outperform SPEER. SigniSite is available at: http://www.cbs.dtu.dk/services/SigniSite/.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkt497</identifier><identifier>PMID: 23761454</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Drug Resistance, Viral - genetics ; Genetic Association Studies - methods ; Genotype ; HIV Protease - genetics ; HIV Protease Inhibitors - pharmacology ; HIV-1 - drug effects ; HIV-1 - genetics ; Internet ; Mutation ; Phenotype ; Position-Specific Scoring Matrices ; Sequence Alignment ; Sequence Analysis, Protein ; Software</subject><ispartof>Nucleic acids research, 2013-07, Vol.41 (Web Server issue), p.W286-W291</ispartof><rights>The Author(s) 2013. Published by Oxford University Press. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-5ad8531425788b7ae55619135efa10be16b4cace6e5ac0362b876c7362dc86763</citedby><cites>FETCH-LOGICAL-c378t-5ad8531425788b7ae55619135efa10be16b4cace6e5ac0362b876c7362dc86763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692133/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692133/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23761454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jessen, Leon Eyrich</creatorcontrib><creatorcontrib>Hoof, Ilka</creatorcontrib><creatorcontrib>Lund, Ole</creatorcontrib><creatorcontrib>Nielsen, Morten</creatorcontrib><title>SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Identifying which mutation(s) within a given genotype is responsible for an observable phenotype is important in many aspects of molecular biology. Here, we present SigniSite, an online application for subgroup-free residue-level genotype-phenotype correlation. In contrast to similar methods, SigniSite does not require any pre-definition of subgroups or binary classification. Input is a set of protein sequences where each sequence has an associated real number, quantifying a given phenotype. SigniSite will then identify which amino acid residues are significantly associated with the data set phenotype. As output, SigniSite displays a sequence logo, depicting the strength of the phenotype association of each residue and a heat-map identifying 'hot' or 'cold' regions. SigniSite was benchmarked against SPEER, a state-of-the-art method for the prediction of specificity determining positions (SDP) using a set of human immunodeficiency virus protease-inhibitor genotype-phenotype data and corresponding resistance mutation scores from the Stanford University HIV Drug Resistance Database, and a data set of protein families with experimentally annotated SDPs. For both data sets, SigniSite was found to outperform SPEER. SigniSite is available at: http://www.cbs.dtu.dk/services/SigniSite/.</description><subject>Drug Resistance, Viral - genetics</subject><subject>Genetic Association Studies - methods</subject><subject>Genotype</subject><subject>HIV Protease - genetics</subject><subject>HIV Protease Inhibitors - pharmacology</subject><subject>HIV-1 - drug effects</subject><subject>HIV-1 - genetics</subject><subject>Internet</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Position-Specific Scoring Matrices</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, Protein</subject><subject>Software</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkUtr3TAQhUVpaW7SbvIDipYl4ESyXnYXhRDygkAXaddClsc3SmXJleRA_n3V3NvQrmZgPs6Zw0HomJJTSnp2Fkw62_4svFdv0IYy2Ta8l-1btCGMiIYS3h2gw5wfCaGcCv4eHbRMScoF36B077bB3bsCX_DtCKG4yVlTXAw4TjhBduMKjYcn8HgLIZbnBZrlYb9hG1MC_8Jn7AJeUixQ57z64hYPOMOvFYIFbHw1mqtB_oDeTcZn-LifR-jH1eX3i5vm7tv17cX5XWOZ6kojzNgJRnkrVNcNyoAQkvaUCZgMJQNQOXBrLEgQxpKaeuiUtKouo-2kkuwIfd3pLusww2irdzJeL8nNJj3raJz-_xLcg97GJ81k31LGqsDnvUCKNUUuenbZgvcmQFyzpkzRVlW0q-jJDrUp5pxgerWhRP8pSdeS9K6kCn_697FX9G8r7DesEpJs</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Jessen, Leon Eyrich</creator><creator>Hoof, Ilka</creator><creator>Lund, Ole</creator><creator>Nielsen, Morten</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments</title><author>Jessen, Leon Eyrich ; Hoof, Ilka ; Lund, Ole ; Nielsen, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-5ad8531425788b7ae55619135efa10be16b4cace6e5ac0362b876c7362dc86763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Drug Resistance, Viral - genetics</topic><topic>Genetic Association Studies - methods</topic><topic>Genotype</topic><topic>HIV Protease - genetics</topic><topic>HIV Protease Inhibitors - pharmacology</topic><topic>HIV-1 - drug effects</topic><topic>HIV-1 - genetics</topic><topic>Internet</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Position-Specific Scoring Matrices</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, Protein</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jessen, Leon Eyrich</creatorcontrib><creatorcontrib>Hoof, Ilka</creatorcontrib><creatorcontrib>Lund, Ole</creatorcontrib><creatorcontrib>Nielsen, Morten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jessen, Leon Eyrich</au><au>Hoof, Ilka</au><au>Lund, Ole</au><au>Nielsen, Morten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>41</volume><issue>Web Server issue</issue><spage>W286</spage><epage>W291</epage><pages>W286-W291</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Identifying which mutation(s) within a given genotype is responsible for an observable phenotype is important in many aspects of molecular biology. Here, we present SigniSite, an online application for subgroup-free residue-level genotype-phenotype correlation. In contrast to similar methods, SigniSite does not require any pre-definition of subgroups or binary classification. Input is a set of protein sequences where each sequence has an associated real number, quantifying a given phenotype. SigniSite will then identify which amino acid residues are significantly associated with the data set phenotype. As output, SigniSite displays a sequence logo, depicting the strength of the phenotype association of each residue and a heat-map identifying 'hot' or 'cold' regions. SigniSite was benchmarked against SPEER, a state-of-the-art method for the prediction of specificity determining positions (SDP) using a set of human immunodeficiency virus protease-inhibitor genotype-phenotype data and corresponding resistance mutation scores from the Stanford University HIV Drug Resistance Database, and a data set of protein families with experimentally annotated SDPs. For both data sets, SigniSite was found to outperform SPEER. SigniSite is available at: http://www.cbs.dtu.dk/services/SigniSite/.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23761454</pmid><doi>10.1093/nar/gkt497</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2013-07, Vol.41 (Web Server issue), p.W286-W291 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3692133 |
source | PubMed Central; Oxford Academic Journals (Open Access) |
subjects | Drug Resistance, Viral - genetics Genetic Association Studies - methods Genotype HIV Protease - genetics HIV Protease Inhibitors - pharmacology HIV-1 - drug effects HIV-1 - genetics Internet Mutation Phenotype Position-Specific Scoring Matrices Sequence Alignment Sequence Analysis, Protein Software |
title | SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SigniSite:%20Identification%20of%20residue-level%20genotype-phenotype%20correlations%20in%20protein%20multiple%20sequence%20alignments&rft.jtitle=Nucleic%20acids%20research&rft.au=Jessen,%20Leon%20Eyrich&rft.date=2013-07-01&rft.volume=41&rft.issue=Web%20Server%20issue&rft.spage=W286&rft.epage=W291&rft.pages=W286-W291&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkt497&rft_dat=%3Cproquest_pubme%3E1371272138%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-5ad8531425788b7ae55619135efa10be16b4cace6e5ac0362b876c7362dc86763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1371272138&rft_id=info:pmid/23761454&rfr_iscdi=true |