Loading…
Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants
The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or...
Saved in:
Published in: | Journal of experimental botany 2013-07, Vol.64 (10), p.2713-2724 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3 |
container_end_page | 2724 |
container_issue | 10 |
container_start_page | 2713 |
container_title | Journal of experimental botany |
container_volume | 64 |
creator | LIANG WANG PEDAS, Pai ERIKSSON, Dennis SCHJOERRING, Jan K |
description | The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or elevated (800 μmol mol(-1)) CO2 concentration with or NH4NO3 as the nitrogen source. The concentrations of and H(+) in the leaf apoplastic solution were measured along with different foliar N pools and enzymes involved in N metabolism. Elevated CO2 caused a threefold decrease in the concentration in the apoplastic solution and slightly acidified it. This resulted in a decline of the from 2.25 and 2.95 nmol mol(-1) under ambient CO2 to 0.37 and 0.89 nmol mol(-1) at elevated CO2 in the and NH4NO3 treatments, respectively. The decrease in at elevated CO2 reflected a lower N concentration (-25%) in the shoot dry matter. The activity of nitrate reductase also declined (-45 to -60%), while that of glutamine synthetase was unaffected by elevated CO2. It is concluded that elevated CO2 increases the likelihood of plants being a sink for atmospheric NH3 and reduces episodes of NH3 emission from plants. |
doi_str_mv | 10.1093/jxb/ert117 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3697944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23740933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhQdRbK1u_AEyGzdC7E1mJtNsBCm-QCiIrsPtzI1NSTJhZiz23xupz9VdnO-cCx9jpylcplCI6fp9OSUf01TvsXEqc0gyKdJ9NgbIsgQKpUfsKIQ1AChQ6pCNMqHl0BRj9nTT0AYjWY6xdaFfka8Nny8ybsl4wkCBxxVxbFvX1ciNa3vqAsbadbx3dRe5q_gSfUNb3jfYxXDMDipsAp183Ql7ub15nt8nj4u7h_n1Y2KkljFZ5rqwVmtS0mIqYaZnMiOVg5WyAJTWVgMgJYhMaWMAtcrFTAFarJQmEhN2tdvt35YtWUNd9NiUva9b9NvSYV3-T7p6Vb66TSnyQhdSDgMXuwHjXQieqp9uCuWn2XIwW-7MDvDZ328_6LfKATj_AjAYbCqPnanDL6fV4D_LxQcih4Py</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>LIANG WANG ; PEDAS, Pai ; ERIKSSON, Dennis ; SCHJOERRING, Jan K</creator><creatorcontrib>LIANG WANG ; PEDAS, Pai ; ERIKSSON, Dennis ; SCHJOERRING, Jan K</creatorcontrib><description>The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or elevated (800 μmol mol(-1)) CO2 concentration with or NH4NO3 as the nitrogen source. The concentrations of and H(+) in the leaf apoplastic solution were measured along with different foliar N pools and enzymes involved in N metabolism. Elevated CO2 caused a threefold decrease in the concentration in the apoplastic solution and slightly acidified it. This resulted in a decline of the from 2.25 and 2.95 nmol mol(-1) under ambient CO2 to 0.37 and 0.89 nmol mol(-1) at elevated CO2 in the and NH4NO3 treatments, respectively. The decrease in at elevated CO2 reflected a lower N concentration (-25%) in the shoot dry matter. The activity of nitrate reductase also declined (-45 to -60%), while that of glutamine synthetase was unaffected by elevated CO2. It is concluded that elevated CO2 increases the likelihood of plants being a sink for atmospheric NH3 and reduces episodes of NH3 emission from plants.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/ert117</identifier><identifier>PMID: 23740933</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Ammonia - analysis ; Ammonia - metabolism ; Atmosphere - analysis ; Biological and medical sciences ; Carbon Dioxide - analysis ; Carbon Dioxide - metabolism ; Climate Change ; Ecosystem ; Fundamental and applied biological sciences. Psychology ; Hordeum - growth & development ; Hordeum - metabolism ; Plant physiology and development ; Research Paper</subject><ispartof>Journal of experimental botany, 2013-07, Vol.64 (10), p.2713-2724</ispartof><rights>2014 INIST-CNRS</rights><rights>The Author [2013]. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3</citedby><cites>FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27500026$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23740933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIANG WANG</creatorcontrib><creatorcontrib>PEDAS, Pai</creatorcontrib><creatorcontrib>ERIKSSON, Dennis</creatorcontrib><creatorcontrib>SCHJOERRING, Jan K</creatorcontrib><title>Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or elevated (800 μmol mol(-1)) CO2 concentration with or NH4NO3 as the nitrogen source. The concentrations of and H(+) in the leaf apoplastic solution were measured along with different foliar N pools and enzymes involved in N metabolism. Elevated CO2 caused a threefold decrease in the concentration in the apoplastic solution and slightly acidified it. This resulted in a decline of the from 2.25 and 2.95 nmol mol(-1) under ambient CO2 to 0.37 and 0.89 nmol mol(-1) at elevated CO2 in the and NH4NO3 treatments, respectively. The decrease in at elevated CO2 reflected a lower N concentration (-25%) in the shoot dry matter. The activity of nitrate reductase also declined (-45 to -60%), while that of glutamine synthetase was unaffected by elevated CO2. It is concluded that elevated CO2 increases the likelihood of plants being a sink for atmospheric NH3 and reduces episodes of NH3 emission from plants.</description><subject>Ammonia - analysis</subject><subject>Ammonia - metabolism</subject><subject>Atmosphere - analysis</subject><subject>Biological and medical sciences</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbon Dioxide - metabolism</subject><subject>Climate Change</subject><subject>Ecosystem</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hordeum - growth & development</subject><subject>Hordeum - metabolism</subject><subject>Plant physiology and development</subject><subject>Research Paper</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLw0AUhQdRbK1u_AEyGzdC7E1mJtNsBCm-QCiIrsPtzI1NSTJhZiz23xupz9VdnO-cCx9jpylcplCI6fp9OSUf01TvsXEqc0gyKdJ9NgbIsgQKpUfsKIQ1AChQ6pCNMqHl0BRj9nTT0AYjWY6xdaFfka8Nny8ybsl4wkCBxxVxbFvX1ciNa3vqAsbadbx3dRe5q_gSfUNb3jfYxXDMDipsAp183Ql7ub15nt8nj4u7h_n1Y2KkljFZ5rqwVmtS0mIqYaZnMiOVg5WyAJTWVgMgJYhMaWMAtcrFTAFarJQmEhN2tdvt35YtWUNd9NiUva9b9NvSYV3-T7p6Vb66TSnyQhdSDgMXuwHjXQieqp9uCuWn2XIwW-7MDvDZ328_6LfKATj_AjAYbCqPnanDL6fV4D_LxQcih4Py</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>LIANG WANG</creator><creator>PEDAS, Pai</creator><creator>ERIKSSON, Dennis</creator><creator>SCHJOERRING, Jan K</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants</title><author>LIANG WANG ; PEDAS, Pai ; ERIKSSON, Dennis ; SCHJOERRING, Jan K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ammonia - analysis</topic><topic>Ammonia - metabolism</topic><topic>Atmosphere - analysis</topic><topic>Biological and medical sciences</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbon Dioxide - metabolism</topic><topic>Climate Change</topic><topic>Ecosystem</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hordeum - growth & development</topic><topic>Hordeum - metabolism</topic><topic>Plant physiology and development</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIANG WANG</creatorcontrib><creatorcontrib>PEDAS, Pai</creatorcontrib><creatorcontrib>ERIKSSON, Dennis</creatorcontrib><creatorcontrib>SCHJOERRING, Jan K</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIANG WANG</au><au>PEDAS, Pai</au><au>ERIKSSON, Dennis</au><au>SCHJOERRING, Jan K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>64</volume><issue>10</issue><spage>2713</spage><epage>2724</epage><pages>2713-2724</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><abstract>The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or elevated (800 μmol mol(-1)) CO2 concentration with or NH4NO3 as the nitrogen source. The concentrations of and H(+) in the leaf apoplastic solution were measured along with different foliar N pools and enzymes involved in N metabolism. Elevated CO2 caused a threefold decrease in the concentration in the apoplastic solution and slightly acidified it. This resulted in a decline of the from 2.25 and 2.95 nmol mol(-1) under ambient CO2 to 0.37 and 0.89 nmol mol(-1) at elevated CO2 in the and NH4NO3 treatments, respectively. The decrease in at elevated CO2 reflected a lower N concentration (-25%) in the shoot dry matter. The activity of nitrate reductase also declined (-45 to -60%), while that of glutamine synthetase was unaffected by elevated CO2. It is concluded that elevated CO2 increases the likelihood of plants being a sink for atmospheric NH3 and reduces episodes of NH3 emission from plants.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>23740933</pmid><doi>10.1093/jxb/ert117</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 2013-07, Vol.64 (10), p.2713-2724 |
issn | 0022-0957 1460-2431 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3697944 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list) |
subjects | Ammonia - analysis Ammonia - metabolism Atmosphere - analysis Biological and medical sciences Carbon Dioxide - analysis Carbon Dioxide - metabolism Climate Change Ecosystem Fundamental and applied biological sciences. Psychology Hordeum - growth & development Hordeum - metabolism Plant physiology and development Research Paper |
title | Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elevated%20atmospheric%20CO2%20decreases%20the%20ammonia%20compensation%20point%20of%20barley%20plants&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=LIANG%20WANG&rft.date=2013-07-01&rft.volume=64&rft.issue=10&rft.spage=2713&rft.epage=2724&rft.pages=2713-2724&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jxb/ert117&rft_dat=%3Cpubmed_cross%3E23740933%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/23740933&rfr_iscdi=true |