Loading…

Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants

The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2013-07, Vol.64 (10), p.2713-2724
Main Authors: LIANG WANG, PEDAS, Pai, ERIKSSON, Dennis, SCHJOERRING, Jan K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3
cites cdi_FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3
container_end_page 2724
container_issue 10
container_start_page 2713
container_title Journal of experimental botany
container_volume 64
creator LIANG WANG
PEDAS, Pai
ERIKSSON, Dennis
SCHJOERRING, Jan K
description The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or elevated (800 μmol mol(-1)) CO2 concentration with or NH4NO3 as the nitrogen source. The concentrations of and H(+) in the leaf apoplastic solution were measured along with different foliar N pools and enzymes involved in N metabolism. Elevated CO2 caused a threefold decrease in the concentration in the apoplastic solution and slightly acidified it. This resulted in a decline of the from 2.25 and 2.95 nmol mol(-1) under ambient CO2 to 0.37 and 0.89 nmol mol(-1) at elevated CO2 in the and NH4NO3 treatments, respectively. The decrease in at elevated CO2 reflected a lower N concentration (-25%) in the shoot dry matter. The activity of nitrate reductase also declined (-45 to -60%), while that of glutamine synthetase was unaffected by elevated CO2. It is concluded that elevated CO2 increases the likelihood of plants being a sink for atmospheric NH3 and reduces episodes of NH3 emission from plants.
doi_str_mv 10.1093/jxb/ert117
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3697944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23740933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhQdRbK1u_AEyGzdC7E1mJtNsBCm-QCiIrsPtzI1NSTJhZiz23xupz9VdnO-cCx9jpylcplCI6fp9OSUf01TvsXEqc0gyKdJ9NgbIsgQKpUfsKIQ1AChQ6pCNMqHl0BRj9nTT0AYjWY6xdaFfka8Nny8ybsl4wkCBxxVxbFvX1ciNa3vqAsbadbx3dRe5q_gSfUNb3jfYxXDMDipsAp183Ql7ub15nt8nj4u7h_n1Y2KkljFZ5rqwVmtS0mIqYaZnMiOVg5WyAJTWVgMgJYhMaWMAtcrFTAFarJQmEhN2tdvt35YtWUNd9NiUva9b9NvSYV3-T7p6Vb66TSnyQhdSDgMXuwHjXQieqp9uCuWn2XIwW-7MDvDZ328_6LfKATj_AjAYbCqPnanDL6fV4D_LxQcih4Py</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>LIANG WANG ; PEDAS, Pai ; ERIKSSON, Dennis ; SCHJOERRING, Jan K</creator><creatorcontrib>LIANG WANG ; PEDAS, Pai ; ERIKSSON, Dennis ; SCHJOERRING, Jan K</creatorcontrib><description>The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or elevated (800 μmol mol(-1)) CO2 concentration with or NH4NO3 as the nitrogen source. The concentrations of and H(+) in the leaf apoplastic solution were measured along with different foliar N pools and enzymes involved in N metabolism. Elevated CO2 caused a threefold decrease in the concentration in the apoplastic solution and slightly acidified it. This resulted in a decline of the from 2.25 and 2.95 nmol mol(-1) under ambient CO2 to 0.37 and 0.89 nmol mol(-1) at elevated CO2 in the and NH4NO3 treatments, respectively. The decrease in at elevated CO2 reflected a lower N concentration (-25%) in the shoot dry matter. The activity of nitrate reductase also declined (-45 to -60%), while that of glutamine synthetase was unaffected by elevated CO2. It is concluded that elevated CO2 increases the likelihood of plants being a sink for atmospheric NH3 and reduces episodes of NH3 emission from plants.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/ert117</identifier><identifier>PMID: 23740933</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Ammonia - analysis ; Ammonia - metabolism ; Atmosphere - analysis ; Biological and medical sciences ; Carbon Dioxide - analysis ; Carbon Dioxide - metabolism ; Climate Change ; Ecosystem ; Fundamental and applied biological sciences. Psychology ; Hordeum - growth &amp; development ; Hordeum - metabolism ; Plant physiology and development ; Research Paper</subject><ispartof>Journal of experimental botany, 2013-07, Vol.64 (10), p.2713-2724</ispartof><rights>2014 INIST-CNRS</rights><rights>The Author [2013]. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3</citedby><cites>FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27500026$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23740933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIANG WANG</creatorcontrib><creatorcontrib>PEDAS, Pai</creatorcontrib><creatorcontrib>ERIKSSON, Dennis</creatorcontrib><creatorcontrib>SCHJOERRING, Jan K</creatorcontrib><title>Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or elevated (800 μmol mol(-1)) CO2 concentration with or NH4NO3 as the nitrogen source. The concentrations of and H(+) in the leaf apoplastic solution were measured along with different foliar N pools and enzymes involved in N metabolism. Elevated CO2 caused a threefold decrease in the concentration in the apoplastic solution and slightly acidified it. This resulted in a decline of the from 2.25 and 2.95 nmol mol(-1) under ambient CO2 to 0.37 and 0.89 nmol mol(-1) at elevated CO2 in the and NH4NO3 treatments, respectively. The decrease in at elevated CO2 reflected a lower N concentration (-25%) in the shoot dry matter. The activity of nitrate reductase also declined (-45 to -60%), while that of glutamine synthetase was unaffected by elevated CO2. It is concluded that elevated CO2 increases the likelihood of plants being a sink for atmospheric NH3 and reduces episodes of NH3 emission from plants.</description><subject>Ammonia - analysis</subject><subject>Ammonia - metabolism</subject><subject>Atmosphere - analysis</subject><subject>Biological and medical sciences</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbon Dioxide - metabolism</subject><subject>Climate Change</subject><subject>Ecosystem</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hordeum - growth &amp; development</subject><subject>Hordeum - metabolism</subject><subject>Plant physiology and development</subject><subject>Research Paper</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLw0AUhQdRbK1u_AEyGzdC7E1mJtNsBCm-QCiIrsPtzI1NSTJhZiz23xupz9VdnO-cCx9jpylcplCI6fp9OSUf01TvsXEqc0gyKdJ9NgbIsgQKpUfsKIQ1AChQ6pCNMqHl0BRj9nTT0AYjWY6xdaFfka8Nny8ybsl4wkCBxxVxbFvX1ciNa3vqAsbadbx3dRe5q_gSfUNb3jfYxXDMDipsAp183Ql7ub15nt8nj4u7h_n1Y2KkljFZ5rqwVmtS0mIqYaZnMiOVg5WyAJTWVgMgJYhMaWMAtcrFTAFarJQmEhN2tdvt35YtWUNd9NiUva9b9NvSYV3-T7p6Vb66TSnyQhdSDgMXuwHjXQieqp9uCuWn2XIwW-7MDvDZ328_6LfKATj_AjAYbCqPnanDL6fV4D_LxQcih4Py</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>LIANG WANG</creator><creator>PEDAS, Pai</creator><creator>ERIKSSON, Dennis</creator><creator>SCHJOERRING, Jan K</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants</title><author>LIANG WANG ; PEDAS, Pai ; ERIKSSON, Dennis ; SCHJOERRING, Jan K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ammonia - analysis</topic><topic>Ammonia - metabolism</topic><topic>Atmosphere - analysis</topic><topic>Biological and medical sciences</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbon Dioxide - metabolism</topic><topic>Climate Change</topic><topic>Ecosystem</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hordeum - growth &amp; development</topic><topic>Hordeum - metabolism</topic><topic>Plant physiology and development</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIANG WANG</creatorcontrib><creatorcontrib>PEDAS, Pai</creatorcontrib><creatorcontrib>ERIKSSON, Dennis</creatorcontrib><creatorcontrib>SCHJOERRING, Jan K</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIANG WANG</au><au>PEDAS, Pai</au><au>ERIKSSON, Dennis</au><au>SCHJOERRING, Jan K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>64</volume><issue>10</issue><spage>2713</spage><epage>2724</epage><pages>2713-2724</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><abstract>The ammonia compensation point ( ) controls the direction and magnitude of NH3 exchange between plant leaves and the atmosphere. Very limited information is currently available on how responds to anticipated climate changes. Young barley plants were grown for 2 weeks at ambient (400 μmol mol(-1)) or elevated (800 μmol mol(-1)) CO2 concentration with or NH4NO3 as the nitrogen source. The concentrations of and H(+) in the leaf apoplastic solution were measured along with different foliar N pools and enzymes involved in N metabolism. Elevated CO2 caused a threefold decrease in the concentration in the apoplastic solution and slightly acidified it. This resulted in a decline of the from 2.25 and 2.95 nmol mol(-1) under ambient CO2 to 0.37 and 0.89 nmol mol(-1) at elevated CO2 in the and NH4NO3 treatments, respectively. The decrease in at elevated CO2 reflected a lower N concentration (-25%) in the shoot dry matter. The activity of nitrate reductase also declined (-45 to -60%), while that of glutamine synthetase was unaffected by elevated CO2. It is concluded that elevated CO2 increases the likelihood of plants being a sink for atmospheric NH3 and reduces episodes of NH3 emission from plants.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>23740933</pmid><doi>10.1093/jxb/ert117</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2013-07, Vol.64 (10), p.2713-2724
issn 0022-0957
1460-2431
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3697944
source JSTOR Archival Journals and Primary Sources Collection; Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)
subjects Ammonia - analysis
Ammonia - metabolism
Atmosphere - analysis
Biological and medical sciences
Carbon Dioxide - analysis
Carbon Dioxide - metabolism
Climate Change
Ecosystem
Fundamental and applied biological sciences. Psychology
Hordeum - growth & development
Hordeum - metabolism
Plant physiology and development
Research Paper
title Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elevated%20atmospheric%20CO2%20decreases%20the%20ammonia%20compensation%20point%20of%20barley%20plants&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=LIANG%20WANG&rft.date=2013-07-01&rft.volume=64&rft.issue=10&rft.spage=2713&rft.epage=2724&rft.pages=2713-2724&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jxb/ert117&rft_dat=%3Cpubmed_cross%3E23740933%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-b679dd77e54da14087842e560d4490a4ddf79d4403257cc0a7563850adaf57ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/23740933&rfr_iscdi=true