Loading…

Minotaur is critical for primary piRNA biogenesis

Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular...

Full description

Saved in:
Bibliographic Details
Published in:RNA (Cambridge) 2013-08, Vol.19 (8), p.1064-1077
Main Authors: Vagin, Vasily V, Yu, Yang, Jankowska, Anna, Luo, Yicheng, Wasik, Kaja A, Malone, Colin D, Harrison, Emily, Rosebrock, Adam, Wakimoto, Barbara T, Fagegaltier, Delphine, Muerdter, Felix, Hannon, Gregory J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-ecfca5c44b5517f8efbf0c08a11fde897e44d6746bfb8783e47232fef2919f423
cites cdi_FETCH-LOGICAL-c489t-ecfca5c44b5517f8efbf0c08a11fde897e44d6746bfb8783e47232fef2919f423
container_end_page 1077
container_issue 8
container_start_page 1064
container_title RNA (Cambridge)
container_volume 19
creator Vagin, Vasily V
Yu, Yang
Jankowska, Anna
Luo, Yicheng
Wasik, Kaja A
Malone, Colin D
Harrison, Emily
Rosebrock, Adam
Wakimoto, Barbara T
Fagegaltier, Delphine
Muerdter, Felix
Hannon, Gregory J
description Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur.
doi_str_mv 10.1261/rna.039669.113
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3708527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1401091134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-ecfca5c44b5517f8efbf0c08a11fde897e44d6746bfb8783e47232fef2919f423</originalsourceid><addsrcrecordid>eNqNUU1LAzEQDaLYWr16lD162TWTZDfJRSjFL6gKoueQTZMa2e7WZFfw3xtpLXrzNMO8N4838xA6BVwAqeAitLrAVFaVLADoHhoDq2QuMYb91NOyzAUVZISOYnxLQ5rgQzQilAvBCRsjuPdt1-shZD5mJvjeG91krgvZOviVDp_Z2j89TLPad0vb2ujjMTpwuon2ZFsn6OX66nl2m88fb-5m03lumJB9bo0zujSM1WUJ3AnraocNFhrALayQ3DK2qDiralcLLqhlnFDirCMSpGOETtDlRnc91Cu7MLbtg27U1pbqtFd_kda_qmX3oSjHoiQ8CZxvBUL3PtjYq5WPxjaNbm03RAWMcAzAKfyDigHL9GCWqMWGakIXY7Bu5wiw-o5EpUjUJhKVNtLC2e87dvSfDOgXz4eHrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1401091134</pqid></control><display><type>article</type><title>Minotaur is critical for primary piRNA biogenesis</title><source>NCBI_PubMed Central(免费)</source><creator>Vagin, Vasily V ; Yu, Yang ; Jankowska, Anna ; Luo, Yicheng ; Wasik, Kaja A ; Malone, Colin D ; Harrison, Emily ; Rosebrock, Adam ; Wakimoto, Barbara T ; Fagegaltier, Delphine ; Muerdter, Felix ; Hannon, Gregory J</creator><creatorcontrib>Vagin, Vasily V ; Yu, Yang ; Jankowska, Anna ; Luo, Yicheng ; Wasik, Kaja A ; Malone, Colin D ; Harrison, Emily ; Rosebrock, Adam ; Wakimoto, Barbara T ; Fagegaltier, Delphine ; Muerdter, Felix ; Hannon, Gregory J</creatorcontrib><description>Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur.</description><identifier>ISSN: 1355-8382</identifier><identifier>EISSN: 1469-9001</identifier><identifier>DOI: 10.1261/rna.039669.113</identifier><identifier>PMID: 23788724</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Argonaute Proteins - genetics ; Argonaute Proteins - metabolism ; Catalytic Domain ; DNA Transposable Elements - genetics ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Female ; Genes, Insect ; Glycerol-3-Phosphate O-Acyltransferase - genetics ; Glycerol-3-Phosphate O-Acyltransferase - metabolism ; Male ; Molecular Sequence Data ; Mutation ; Phospholipids - metabolism ; RNA, Small Interfering - biosynthesis ; RNA, Small Interfering - genetics ; Signal Transduction</subject><ispartof>RNA (Cambridge), 2013-08, Vol.19 (8), p.1064-1077</ispartof><rights>2013; Published by Cold Spring Harbor Laboratory Press for the RNA Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-ecfca5c44b5517f8efbf0c08a11fde897e44d6746bfb8783e47232fef2919f423</citedby><cites>FETCH-LOGICAL-c489t-ecfca5c44b5517f8efbf0c08a11fde897e44d6746bfb8783e47232fef2919f423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708527/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708527/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23788724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vagin, Vasily V</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Jankowska, Anna</creatorcontrib><creatorcontrib>Luo, Yicheng</creatorcontrib><creatorcontrib>Wasik, Kaja A</creatorcontrib><creatorcontrib>Malone, Colin D</creatorcontrib><creatorcontrib>Harrison, Emily</creatorcontrib><creatorcontrib>Rosebrock, Adam</creatorcontrib><creatorcontrib>Wakimoto, Barbara T</creatorcontrib><creatorcontrib>Fagegaltier, Delphine</creatorcontrib><creatorcontrib>Muerdter, Felix</creatorcontrib><creatorcontrib>Hannon, Gregory J</creatorcontrib><title>Minotaur is critical for primary piRNA biogenesis</title><title>RNA (Cambridge)</title><addtitle>RNA</addtitle><description>Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Argonaute Proteins - genetics</subject><subject>Argonaute Proteins - metabolism</subject><subject>Catalytic Domain</subject><subject>DNA Transposable Elements - genetics</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Female</subject><subject>Genes, Insect</subject><subject>Glycerol-3-Phosphate O-Acyltransferase - genetics</subject><subject>Glycerol-3-Phosphate O-Acyltransferase - metabolism</subject><subject>Male</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Phospholipids - metabolism</subject><subject>RNA, Small Interfering - biosynthesis</subject><subject>RNA, Small Interfering - genetics</subject><subject>Signal Transduction</subject><issn>1355-8382</issn><issn>1469-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNUU1LAzEQDaLYWr16lD162TWTZDfJRSjFL6gKoueQTZMa2e7WZFfw3xtpLXrzNMO8N4838xA6BVwAqeAitLrAVFaVLADoHhoDq2QuMYb91NOyzAUVZISOYnxLQ5rgQzQilAvBCRsjuPdt1-shZD5mJvjeG91krgvZOviVDp_Z2j89TLPad0vb2ujjMTpwuon2ZFsn6OX66nl2m88fb-5m03lumJB9bo0zujSM1WUJ3AnraocNFhrALayQ3DK2qDiralcLLqhlnFDirCMSpGOETtDlRnc91Cu7MLbtg27U1pbqtFd_kda_qmX3oSjHoiQ8CZxvBUL3PtjYq5WPxjaNbm03RAWMcAzAKfyDigHL9GCWqMWGakIXY7Bu5wiw-o5EpUjUJhKVNtLC2e87dvSfDOgXz4eHrQ</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Vagin, Vasily V</creator><creator>Yu, Yang</creator><creator>Jankowska, Anna</creator><creator>Luo, Yicheng</creator><creator>Wasik, Kaja A</creator><creator>Malone, Colin D</creator><creator>Harrison, Emily</creator><creator>Rosebrock, Adam</creator><creator>Wakimoto, Barbara T</creator><creator>Fagegaltier, Delphine</creator><creator>Muerdter, Felix</creator><creator>Hannon, Gregory J</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20130801</creationdate><title>Minotaur is critical for primary piRNA biogenesis</title><author>Vagin, Vasily V ; Yu, Yang ; Jankowska, Anna ; Luo, Yicheng ; Wasik, Kaja A ; Malone, Colin D ; Harrison, Emily ; Rosebrock, Adam ; Wakimoto, Barbara T ; Fagegaltier, Delphine ; Muerdter, Felix ; Hannon, Gregory J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-ecfca5c44b5517f8efbf0c08a11fde897e44d6746bfb8783e47232fef2919f423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Argonaute Proteins - genetics</topic><topic>Argonaute Proteins - metabolism</topic><topic>Catalytic Domain</topic><topic>DNA Transposable Elements - genetics</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Female</topic><topic>Genes, Insect</topic><topic>Glycerol-3-Phosphate O-Acyltransferase - genetics</topic><topic>Glycerol-3-Phosphate O-Acyltransferase - metabolism</topic><topic>Male</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Phospholipids - metabolism</topic><topic>RNA, Small Interfering - biosynthesis</topic><topic>RNA, Small Interfering - genetics</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vagin, Vasily V</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Jankowska, Anna</creatorcontrib><creatorcontrib>Luo, Yicheng</creatorcontrib><creatorcontrib>Wasik, Kaja A</creatorcontrib><creatorcontrib>Malone, Colin D</creatorcontrib><creatorcontrib>Harrison, Emily</creatorcontrib><creatorcontrib>Rosebrock, Adam</creatorcontrib><creatorcontrib>Wakimoto, Barbara T</creatorcontrib><creatorcontrib>Fagegaltier, Delphine</creatorcontrib><creatorcontrib>Muerdter, Felix</creatorcontrib><creatorcontrib>Hannon, Gregory J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RNA (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vagin, Vasily V</au><au>Yu, Yang</au><au>Jankowska, Anna</au><au>Luo, Yicheng</au><au>Wasik, Kaja A</au><au>Malone, Colin D</au><au>Harrison, Emily</au><au>Rosebrock, Adam</au><au>Wakimoto, Barbara T</au><au>Fagegaltier, Delphine</au><au>Muerdter, Felix</au><au>Hannon, Gregory J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minotaur is critical for primary piRNA biogenesis</atitle><jtitle>RNA (Cambridge)</jtitle><addtitle>RNA</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>19</volume><issue>8</issue><spage>1064</spage><epage>1077</epage><pages>1064-1077</pages><issn>1355-8382</issn><eissn>1469-9001</eissn><abstract>Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>23788724</pmid><doi>10.1261/rna.039669.113</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-8382
ispartof RNA (Cambridge), 2013-08, Vol.19 (8), p.1064-1077
issn 1355-8382
1469-9001
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3708527
source NCBI_PubMed Central(免费)
subjects Amino Acid Sequence
Animals
Animals, Genetically Modified
Argonaute Proteins - genetics
Argonaute Proteins - metabolism
Catalytic Domain
DNA Transposable Elements - genetics
Drosophila
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Female
Genes, Insect
Glycerol-3-Phosphate O-Acyltransferase - genetics
Glycerol-3-Phosphate O-Acyltransferase - metabolism
Male
Molecular Sequence Data
Mutation
Phospholipids - metabolism
RNA, Small Interfering - biosynthesis
RNA, Small Interfering - genetics
Signal Transduction
title Minotaur is critical for primary piRNA biogenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minotaur%20is%20critical%20for%20primary%20piRNA%20biogenesis&rft.jtitle=RNA%20(Cambridge)&rft.au=Vagin,%20Vasily%20V&rft.date=2013-08-01&rft.volume=19&rft.issue=8&rft.spage=1064&rft.epage=1077&rft.pages=1064-1077&rft.issn=1355-8382&rft.eissn=1469-9001&rft_id=info:doi/10.1261/rna.039669.113&rft_dat=%3Cproquest_pubme%3E1401091134%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-ecfca5c44b5517f8efbf0c08a11fde897e44d6746bfb8783e47232fef2919f423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1401091134&rft_id=info:pmid/23788724&rfr_iscdi=true