Loading…

Preliminary report on use of 3-dimensional computed tomographic images in a disease-based transesophageal echocardiographic simulation system

We used 3-dimensional computed tomographic images to create a disease-based transesophageal echocardiographic simulation system for complex congenital heart defects. We enrolled 7 pediatric patients with complex congenital heart defects in this proof-of-concept study. Preoperative computed tomograph...

Full description

Saved in:
Bibliographic Details
Published in:Texas Heart Institute journal 2013, Vol.40 (3), p.250-255
Main Authors: Zhu, Da, Fang, Deng-Feng, Zhou, Leng, Peng, Li-Qing, Lin, Ke, Tang, Hong, Liu, Bin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We used 3-dimensional computed tomographic images to create a disease-based transesophageal echocardiographic simulation system for complex congenital heart defects. We enrolled 7 pediatric patients with complex congenital heart defects in this proof-of-concept study. Preoperative computed tomographic images and intraoperative transesophageal echocardiographic images were acquired for all patients. Two- and 3-dimensional computed tomographic cross-sectional images were created to simulate the process of transesophageal echocardiographic image acquisition. Computed tomographic images simulating the midesophageal 4- and 5-chamber views, aortic valve short-axis views, long-axis views, and ascending aortic short-axis views were created to correspond with the actual transesophageal echocardiographic images from each patient. Four reviewers then evaluated the image quality of the computed tomographic images, the agreement between the echocardiographic and tomographic images, and the ability of the 3-dimensional computed tomographic full-volume and cross-sectional images to yield the spatial and temporal congruence of transesophageal echocardiograms. In most of the patients, computed tomography yielded images of good-to-excellent quality. Strong agreement was noted between the computed tomographic and transesophageal echocardiographic images acquired in the same patients. The ability of 3-dimensional computed tomography to yield the spatial and temporal congruence of transesophageal echocardiography in selected planes was also good to excellent. We found that 3-dimensional computed tomographic images can simulate the process of transesophageal echocardiography in acquiring the echocardiographic image clearly. This imaging method has the potential to be applied successfully to a disease-based transesophageal echocardiographic simulation system.
ISSN:0730-2347
1526-6702