Loading…
Analysis of High-Dimensional Structure-Activity Screening Datasets Using the Optimal Bit String Tree
We propose a new classification method called the Optimal Bit String Tree (OBSTree) to identify quantitative structure-activity relationships (QSARs). The method introduces the concept of a chromosome to describe the presence/absence context of a combination of descriptors. A descriptor set and its...
Saved in:
Published in: | Technometrics 2013-05, Vol.55 (2), p.161-173 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c514t-d0bcb244c169eae3105a9323355aaef7b34be87e45172dbc322b9efdb3a350053 |
---|---|
cites | cdi_FETCH-LOGICAL-c514t-d0bcb244c169eae3105a9323355aaef7b34be87e45172dbc322b9efdb3a350053 |
container_end_page | 173 |
container_issue | 2 |
container_start_page | 161 |
container_title | Technometrics |
container_volume | 55 |
creator | Zhang, Ke Hughes-Oliver, Jacqueline M. Young, S. Stanley |
description | We propose a new classification method called the Optimal Bit String Tree (OBSTree) to identify quantitative structure-activity relationships (QSARs). The method introduces the concept of a chromosome to describe the presence/absence context of a combination of descriptors. A descriptor set and its optimal chromosome form the splitting variable. A new stochastic searching scheme that contains a weighted sampling scheme, simulated annealing, and a trimming procedure optimizes the choice of splitting variable. Simulation studies and an application to screening monoamine oxidase inhibitors show that OBSTree is advantageous in accurately and effectively identifying QSAR rules and finding different classes of active compounds. Details of the algorithm, SAS code, and simulated and real datasets are available online as supplementary materials. |
doi_str_mv | 10.1080/00401706.2012.760489 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3714111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24587125</jstor_id><sourcerecordid>24587125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-d0bcb244c169eae3105a9323355aaef7b34be87e45172dbc322b9efdb3a350053</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhHwCKxIVLtv6MvRfQtgVaqVIPbc-W40x2vUrixXZa7b_HUdryceBkeeZ5R-_Mi9B7gpcEK3yCMcdE4mpJMaFLWWGuVi_QgggmSyope4kWE1JOzBF6E-MOY8Kokq_REWVKKo7lAjXrwXSH6GLh2-LCbbbluethiM7nenGTwmjTGKBc2-TuXToUNzYADG7YFOcmmQgpFndx-qYtFNf75PqsO3Vp0k7l24y_Ra9a00V49_geo7vv327PLsqr6x-XZ-ur0grCU9ng2taUc0uqFRhgBAuzYpQxIYyBVtaM16AkcEEkbWrLKK1X0DY1M0xgLNgx-jLP3Y91D42FIQXT6X3IpsJBe-P0353BbfXG32smCSeE5AGfHwcE_3OEmHTvooWuMwP4MWqiaCUkrZTM6Kd_0J0fQz5appioMGVSsUzxmbLBxxigfTZDsJ5i1E8x6ilGPceYZR__XORZ9JRbBj7MwC4mH373uVCS0OkSX-e-G1ofevPgQ9foZA6dD20wg3VRs_9a-AX3arZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356023783</pqid></control><display><type>article</type><title>Analysis of High-Dimensional Structure-Activity Screening Datasets Using the Optimal Bit String Tree</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Zhang, Ke ; Hughes-Oliver, Jacqueline M. ; Young, S. Stanley</creator><creatorcontrib>Zhang, Ke ; Hughes-Oliver, Jacqueline M. ; Young, S. Stanley</creatorcontrib><description>We propose a new classification method called the Optimal Bit String Tree (OBSTree) to identify quantitative structure-activity relationships (QSARs). The method introduces the concept of a chromosome to describe the presence/absence context of a combination of descriptors. A descriptor set and its optimal chromosome form the splitting variable. A new stochastic searching scheme that contains a weighted sampling scheme, simulated annealing, and a trimming procedure optimizes the choice of splitting variable. Simulation studies and an application to screening monoamine oxidase inhibitors show that OBSTree is advantageous in accurately and effectively identifying QSAR rules and finding different classes of active compounds. Details of the algorithm, SAS code, and simulated and real datasets are available online as supplementary materials.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.2012.760489</identifier><identifier>PMID: 23878407</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>United States: Taylor & Francis Group</publisher><subject>Chemical compounds ; Chromosomes ; Classification ; Drug discovery ; High throughput screening ; Prediction ; QSAR ; Simulated annealing ; Simulation ; Stochastic models</subject><ispartof>Technometrics, 2013-05, Vol.55 (2), p.161-173</ispartof><rights>Copyright Taylor & Francis Group, LLC 2013</rights><rights>2013 American Statistical Association and the American Society for Quality</rights><rights>Copyright Taylor & Francis Ltd. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-d0bcb244c169eae3105a9323355aaef7b34be87e45172dbc322b9efdb3a350053</citedby><cites>FETCH-LOGICAL-c514t-d0bcb244c169eae3105a9323355aaef7b34be87e45172dbc322b9efdb3a350053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24587125$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24587125$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23878407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Hughes-Oliver, Jacqueline M.</creatorcontrib><creatorcontrib>Young, S. Stanley</creatorcontrib><title>Analysis of High-Dimensional Structure-Activity Screening Datasets Using the Optimal Bit String Tree</title><title>Technometrics</title><addtitle>Technometrics</addtitle><description>We propose a new classification method called the Optimal Bit String Tree (OBSTree) to identify quantitative structure-activity relationships (QSARs). The method introduces the concept of a chromosome to describe the presence/absence context of a combination of descriptors. A descriptor set and its optimal chromosome form the splitting variable. A new stochastic searching scheme that contains a weighted sampling scheme, simulated annealing, and a trimming procedure optimizes the choice of splitting variable. Simulation studies and an application to screening monoamine oxidase inhibitors show that OBSTree is advantageous in accurately and effectively identifying QSAR rules and finding different classes of active compounds. Details of the algorithm, SAS code, and simulated and real datasets are available online as supplementary materials.</description><subject>Chemical compounds</subject><subject>Chromosomes</subject><subject>Classification</subject><subject>Drug discovery</subject><subject>High throughput screening</subject><subject>Prediction</subject><subject>QSAR</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Stochastic models</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhHwCKxIVLtv6MvRfQtgVaqVIPbc-W40x2vUrixXZa7b_HUdryceBkeeZ5R-_Mi9B7gpcEK3yCMcdE4mpJMaFLWWGuVi_QgggmSyope4kWE1JOzBF6E-MOY8Kokq_REWVKKo7lAjXrwXSH6GLh2-LCbbbluethiM7nenGTwmjTGKBc2-TuXToUNzYADG7YFOcmmQgpFndx-qYtFNf75PqsO3Vp0k7l24y_Ra9a00V49_geo7vv327PLsqr6x-XZ-ur0grCU9ng2taUc0uqFRhgBAuzYpQxIYyBVtaM16AkcEEkbWrLKK1X0DY1M0xgLNgx-jLP3Y91D42FIQXT6X3IpsJBe-P0353BbfXG32smCSeE5AGfHwcE_3OEmHTvooWuMwP4MWqiaCUkrZTM6Kd_0J0fQz5appioMGVSsUzxmbLBxxigfTZDsJ5i1E8x6ilGPceYZR__XORZ9JRbBj7MwC4mH373uVCS0OkSX-e-G1ofevPgQ9foZA6dD20wg3VRs_9a-AX3arZw</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Zhang, Ke</creator><creator>Hughes-Oliver, Jacqueline M.</creator><creator>Young, S. Stanley</creator><general>Taylor & Francis Group</general><general>American Society for Quality and the American Statistical Association</general><general>American Society for Quality</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130501</creationdate><title>Analysis of High-Dimensional Structure-Activity Screening Datasets Using the Optimal Bit String Tree</title><author>Zhang, Ke ; Hughes-Oliver, Jacqueline M. ; Young, S. Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-d0bcb244c169eae3105a9323355aaef7b34be87e45172dbc322b9efdb3a350053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical compounds</topic><topic>Chromosomes</topic><topic>Classification</topic><topic>Drug discovery</topic><topic>High throughput screening</topic><topic>Prediction</topic><topic>QSAR</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Hughes-Oliver, Jacqueline M.</creatorcontrib><creatorcontrib>Young, S. Stanley</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ke</au><au>Hughes-Oliver, Jacqueline M.</au><au>Young, S. Stanley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of High-Dimensional Structure-Activity Screening Datasets Using the Optimal Bit String Tree</atitle><jtitle>Technometrics</jtitle><addtitle>Technometrics</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>55</volume><issue>2</issue><spage>161</spage><epage>173</epage><pages>161-173</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>We propose a new classification method called the Optimal Bit String Tree (OBSTree) to identify quantitative structure-activity relationships (QSARs). The method introduces the concept of a chromosome to describe the presence/absence context of a combination of descriptors. A descriptor set and its optimal chromosome form the splitting variable. A new stochastic searching scheme that contains a weighted sampling scheme, simulated annealing, and a trimming procedure optimizes the choice of splitting variable. Simulation studies and an application to screening monoamine oxidase inhibitors show that OBSTree is advantageous in accurately and effectively identifying QSAR rules and finding different classes of active compounds. Details of the algorithm, SAS code, and simulated and real datasets are available online as supplementary materials.</abstract><cop>United States</cop><pub>Taylor & Francis Group</pub><pmid>23878407</pmid><doi>10.1080/00401706.2012.760489</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 2013-05, Vol.55 (2), p.161-173 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3714111 |
source | JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection |
subjects | Chemical compounds Chromosomes Classification Drug discovery High throughput screening Prediction QSAR Simulated annealing Simulation Stochastic models |
title | Analysis of High-Dimensional Structure-Activity Screening Datasets Using the Optimal Bit String Tree |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20High-Dimensional%20Structure-Activity%20Screening%20Datasets%20Using%20the%20Optimal%20Bit%20String%20Tree&rft.jtitle=Technometrics&rft.au=Zhang,%20Ke&rft.date=2013-05-01&rft.volume=55&rft.issue=2&rft.spage=161&rft.epage=173&rft.pages=161-173&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.2012.760489&rft_dat=%3Cjstor_pubme%3E24587125%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-d0bcb244c169eae3105a9323355aaef7b34be87e45172dbc322b9efdb3a350053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1356023783&rft_id=info:pmid/23878407&rft_jstor_id=24587125&rfr_iscdi=true |