Loading…
Why We Need Crowdsourced Data in Infectious Disease Surveillance
In infectious disease surveillance, public health data such as environmental, hospital, or census data have been extensively explored to create robust models of disease dynamics. However, this information is also subject to its own biases, including latency, high cost, contributor biases, and imprec...
Saved in:
Published in: | Current infectious disease reports 2013-08, Vol.15 (4), p.316-319 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-ebbb030325e1cd843fd708f53af9b69489d5d3bd3394ed2fddee3650511da15a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-ebbb030325e1cd843fd708f53af9b69489d5d3bd3394ed2fddee3650511da15a3 |
container_end_page | 319 |
container_issue | 4 |
container_start_page | 316 |
container_title | Current infectious disease reports |
container_volume | 15 |
creator | Chunara, Rumi Smolinski, Mark S. Brownstein, John S. |
description | In infectious disease surveillance, public health data such as environmental, hospital, or census data have been extensively explored to create robust models of disease dynamics. However, this information is also subject to its own biases, including latency, high cost, contributor biases, and imprecise resolution. Simultaneously, new technologies including Internet and mobile phone based tools, now enable information to be garnered directly from individuals at the point of care. Here, we consider how these crowdsourced data offer the opportunity to fill gaps in and augment current epidemiological models. Challenges and methods for overcoming limitations of the data are also reviewed. As more new information sources become mature, incorporating these novel data into epidemiological frameworks will enable us to learn more about infectious disease dynamics. |
doi_str_mv | 10.1007/s11908-013-0341-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3718458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3021936201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ebbb030325e1cd843fd708f53af9b69489d5d3bd3394ed2fddee3650511da15a3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEYmPwAbigSpwLcZ2s6QWBxl9pggMgjlHauFunrR1JC-Lbk2ljggOnOPJ7z_aPsWPgZ8B5eu4BMq5iDhhzFBDLHdYHiSJGEMPdVZ1gjEqkPXbg_YzzJLjUPuslOFRZlkGfXb5Nv6I3ih6JbDRyzaf1TeeK8Lk2rYmqOnqoSyraqul8dF15Mp6i5859UDWfm7qgQ7ZXmrmno807YK-3Ny-j-3j8dPcwuhrHhUh5G1Oe5xw5JpKgsEpgaVOuSommzPJhJlRmpcXcImaCbFJaS4RDySWANSANDtjFOnfZ5QuyBdWtM3O9dNXCuC_dmEr_7dTVVE-aD40pKCFVCDjdBLjmvSPf6lm4tA47axCcS5VCADlgsFYVrvHeUbmdAFyvoOs1dB20egVdy-A5-b3a1vFDOQiStcCHVj0h92v0v6nfFemNEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400587101</pqid></control><display><type>article</type><title>Why We Need Crowdsourced Data in Infectious Disease Surveillance</title><source>Springer Link</source><creator>Chunara, Rumi ; Smolinski, Mark S. ; Brownstein, John S.</creator><creatorcontrib>Chunara, Rumi ; Smolinski, Mark S. ; Brownstein, John S.</creatorcontrib><description>In infectious disease surveillance, public health data such as environmental, hospital, or census data have been extensively explored to create robust models of disease dynamics. However, this information is also subject to its own biases, including latency, high cost, contributor biases, and imprecise resolution. Simultaneously, new technologies including Internet and mobile phone based tools, now enable information to be garnered directly from individuals at the point of care. Here, we consider how these crowdsourced data offer the opportunity to fill gaps in and augment current epidemiological models. Challenges and methods for overcoming limitations of the data are also reviewed. As more new information sources become mature, incorporating these novel data into epidemiological frameworks will enable us to learn more about infectious disease dynamics.</description><identifier>ISSN: 1523-3847</identifier><identifier>EISSN: 1534-3146</identifier><identifier>DOI: 10.1007/s11908-013-0341-5</identifier><identifier>PMID: 23689991</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Crowdsourcing ; Epidemiology ; Hot Topic ; Infectious Diseases ; Medicine ; Medicine & Public Health ; Public health</subject><ispartof>Current infectious disease reports, 2013-08, Vol.15 (4), p.316-319</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ebbb030325e1cd843fd708f53af9b69489d5d3bd3394ed2fddee3650511da15a3</citedby><cites>FETCH-LOGICAL-c470t-ebbb030325e1cd843fd708f53af9b69489d5d3bd3394ed2fddee3650511da15a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23689991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chunara, Rumi</creatorcontrib><creatorcontrib>Smolinski, Mark S.</creatorcontrib><creatorcontrib>Brownstein, John S.</creatorcontrib><title>Why We Need Crowdsourced Data in Infectious Disease Surveillance</title><title>Current infectious disease reports</title><addtitle>Curr Infect Dis Rep</addtitle><addtitle>Curr Infect Dis Rep</addtitle><description>In infectious disease surveillance, public health data such as environmental, hospital, or census data have been extensively explored to create robust models of disease dynamics. However, this information is also subject to its own biases, including latency, high cost, contributor biases, and imprecise resolution. Simultaneously, new technologies including Internet and mobile phone based tools, now enable information to be garnered directly from individuals at the point of care. Here, we consider how these crowdsourced data offer the opportunity to fill gaps in and augment current epidemiological models. Challenges and methods for overcoming limitations of the data are also reviewed. As more new information sources become mature, incorporating these novel data into epidemiological frameworks will enable us to learn more about infectious disease dynamics.</description><subject>Crowdsourcing</subject><subject>Epidemiology</subject><subject>Hot Topic</subject><subject>Infectious Diseases</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Public health</subject><issn>1523-3847</issn><issn>1534-3146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwzAMxSMEYmPwAbigSpwLcZ2s6QWBxl9pggMgjlHauFunrR1JC-Lbk2ljggOnOPJ7z_aPsWPgZ8B5eu4BMq5iDhhzFBDLHdYHiSJGEMPdVZ1gjEqkPXbg_YzzJLjUPuslOFRZlkGfXb5Nv6I3ih6JbDRyzaf1TeeK8Lk2rYmqOnqoSyraqul8dF15Mp6i5859UDWfm7qgQ7ZXmrmno807YK-3Ny-j-3j8dPcwuhrHhUh5G1Oe5xw5JpKgsEpgaVOuSommzPJhJlRmpcXcImaCbFJaS4RDySWANSANDtjFOnfZ5QuyBdWtM3O9dNXCuC_dmEr_7dTVVE-aD40pKCFVCDjdBLjmvSPf6lm4tA47axCcS5VCADlgsFYVrvHeUbmdAFyvoOs1dB20egVdy-A5-b3a1vFDOQiStcCHVj0h92v0v6nfFemNEQ</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Chunara, Rumi</creator><creator>Smolinski, Mark S.</creator><creator>Brownstein, John S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope></search><sort><creationdate>20130801</creationdate><title>Why We Need Crowdsourced Data in Infectious Disease Surveillance</title><author>Chunara, Rumi ; Smolinski, Mark S. ; Brownstein, John S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ebbb030325e1cd843fd708f53af9b69489d5d3bd3394ed2fddee3650511da15a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Crowdsourcing</topic><topic>Epidemiology</topic><topic>Hot Topic</topic><topic>Infectious Diseases</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Public health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chunara, Rumi</creatorcontrib><creatorcontrib>Smolinski, Mark S.</creatorcontrib><creatorcontrib>Brownstein, John S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current infectious disease reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chunara, Rumi</au><au>Smolinski, Mark S.</au><au>Brownstein, John S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why We Need Crowdsourced Data in Infectious Disease Surveillance</atitle><jtitle>Current infectious disease reports</jtitle><stitle>Curr Infect Dis Rep</stitle><addtitle>Curr Infect Dis Rep</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>15</volume><issue>4</issue><spage>316</spage><epage>319</epage><pages>316-319</pages><issn>1523-3847</issn><eissn>1534-3146</eissn><abstract>In infectious disease surveillance, public health data such as environmental, hospital, or census data have been extensively explored to create robust models of disease dynamics. However, this information is also subject to its own biases, including latency, high cost, contributor biases, and imprecise resolution. Simultaneously, new technologies including Internet and mobile phone based tools, now enable information to be garnered directly from individuals at the point of care. Here, we consider how these crowdsourced data offer the opportunity to fill gaps in and augment current epidemiological models. Challenges and methods for overcoming limitations of the data are also reviewed. As more new information sources become mature, incorporating these novel data into epidemiological frameworks will enable us to learn more about infectious disease dynamics.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23689991</pmid><doi>10.1007/s11908-013-0341-5</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1523-3847 |
ispartof | Current infectious disease reports, 2013-08, Vol.15 (4), p.316-319 |
issn | 1523-3847 1534-3146 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3718458 |
source | Springer Link |
subjects | Crowdsourcing Epidemiology Hot Topic Infectious Diseases Medicine Medicine & Public Health Public health |
title | Why We Need Crowdsourced Data in Infectious Disease Surveillance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A17%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20We%20Need%20Crowdsourced%20Data%20in%20Infectious%20Disease%20Surveillance&rft.jtitle=Current%20infectious%20disease%20reports&rft.au=Chunara,%20Rumi&rft.date=2013-08-01&rft.volume=15&rft.issue=4&rft.spage=316&rft.epage=319&rft.pages=316-319&rft.issn=1523-3847&rft.eissn=1534-3146&rft_id=info:doi/10.1007/s11908-013-0341-5&rft_dat=%3Cproquest_pubme%3E3021936201%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-ebbb030325e1cd843fd708f53af9b69489d5d3bd3394ed2fddee3650511da15a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1400587101&rft_id=info:pmid/23689991&rfr_iscdi=true |