Loading…

OPAA template-directed synthesis and optical properties of metal nanocrystals

Ag and Cu nanocrystals (NCs) were assembled into ordered porous anodic alumina (OPAA) by a single-potential-step chronoamperometry technique. The composition, morphology, microstructure, and optical property were analyzed by X-ray diffraction, field-emission scanning electron microscopy, transmissio...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale research letters 2013-07, Vol.8 (1), p.328-328, Article 328
Main Authors: Yang, Xiu-chun, Hou, Jun-wei, Liu, Yan, Cui, Miao-miao, Lu, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ag and Cu nanocrystals (NCs) were assembled into ordered porous anodic alumina (OPAA) by a single-potential-step chronoamperometry technique. The composition, morphology, microstructure, and optical property were analyzed by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and optical absorption spectroscopy. The results indicate that metallic NCs/OPAA composite possesses a significant surface plasmon resonance absorption. For continuous electrodeposition, metallic nanowires are smooth and uniform with face-centered cubic (fcc) single-crystalline structure; however, for interval electrodeposition, the nanowires are bamboo-like or pearl-chain-like with fcc polycrystalline structure. The length of the nanoparticle nanowires or the single-crystalline nanowires can be controlled well by adjusting the experimental cycle times or the continuous depositing time. The transverse dipole resonance of metallic NCs enhances and displays a blue shift with increasing electrodeposition time or experimental cycle times, which is consistent with Zong's results but contradictory to Duan's results. The formation mechanisms of the nanoparticle nanowires and the single-crystalline nanowires were discussed in detail.
ISSN:1931-7573
1556-276X
1556-276X
DOI:10.1186/1556-276X-8-328