Loading…

Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria

Temperature is one of the most important environmental factors affecting the growth and survival of microorganisms and in light of current global patterns is of particular interest. Here, we highlight studies revealing how vitamin B 12 (cobalamin)-producing bacteria increase the fitness of the unice...

Full description

Saved in:
Bibliographic Details
Published in:The ISME Journal 2013-08, Vol.7 (8), p.1544-1555
Main Authors: Xie, Bo, Bishop, Shawn, Stessman, Dan, Wright, David, Spalding, Martin H, Halverson, Larry J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3693-964806b4eccbf92e97f381c819b7b1f01217cad2a07bc871fbeff370ba24ea343
cites cdi_FETCH-LOGICAL-c3693-964806b4eccbf92e97f381c819b7b1f01217cad2a07bc871fbeff370ba24ea343
container_end_page 1555
container_issue 8
container_start_page 1544
container_title The ISME Journal
container_volume 7
creator Xie, Bo
Bishop, Shawn
Stessman, Dan
Wright, David
Spalding, Martin H
Halverson, Larry J
description Temperature is one of the most important environmental factors affecting the growth and survival of microorganisms and in light of current global patterns is of particular interest. Here, we highlight studies revealing how vitamin B 12 (cobalamin)-producing bacteria increase the fitness of the unicellular alga Chlamydomonas reinhardtii following an increase in environmental temperature. Heat stress represses C. reinhardtii cobalamin-independent methionine synthase ( METE) gene expression coinciding with a reduction in METE-mediated methionine synthase activity, chlorosis and cell death during heat stress. However, in the presence of cobalamin-producing bacteria or exogenous cobalamin amendments C. reinhardtii cobalamin-dependent methionine synthase METH-mediated methionine biosynthesis is functional at temperatures that result in C. reinhardtii death in the absence of cobalamin. Artificial microRNA silencing of C. reinhardtii METH expression leads to nearly complete loss of cobalamin-mediated enhancement of thermal tolerance. This suggests that methionine biosynthesis is an essential cellular mechanism for adaptation by C. reinhardtii to thermal stress. Increased fitness advantage of METH under environmentally stressful conditions could explain the selective pressure for retaining the METH gene in algae and the apparent independent loss of the METE gene in various algal species. Our results show that how an organism acclimates to a change in its abiotic environment depends critically on co-occurring species, the nature of that interaction, and how those species interactions evolve.
doi_str_mv 10.1038/ismej.2013.43
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3721113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3025670801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3693-964806b4eccbf92e97f381c819b7b1f01217cad2a07bc871fbeff370ba24ea343</originalsourceid><addsrcrecordid>eNptkc1v1DAQxSNERUvhyBVZ4pzFY2fj5IIEK76kSr2Us2U7k41Xsb3YTtEe-c_xsmVVpJ7G0vvpzRu_qnoDdAWUd-9tcrhbMQp81fBn1RWINdSCC_r8_G7ZZfUypR2la9G24kV1yXjTtWzNr6rfm2lW7jAEF7xKJKL1k4pDtpbkCaNTM8lhxqi8QYJFK9Ohz8ThYFXGgegDUcQteVGzTdkaYn0uvMk2ePLL5onc26yc9eQTsHofw7AY67dEFwSjVa-qi1HNCV8_zOvqx5fPd5tv9c3t1--bjze14W3P675tOtrqBo3RY8-wFyPvwHTQa6FhpMBAGDUwRYU2nYBR4ziWb9CKNah4w6-rDyff_aJLeFOOiGqW-2idigcZlJX_K95OchvuJRcMAHgxePdgEMPPBVOWu7BEXzJLaABoD5T2hapPlIkhpYjjeQNQeWxM_m1MHhuTzdH17eNYZ_pfRQVYnYBUJL_F-Gjtk45_AC88pl0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411091009</pqid></control><display><type>article</type><title>Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria</title><source>PubMed (Medline)</source><source>Oxford Journals Open Access Collection</source><creator>Xie, Bo ; Bishop, Shawn ; Stessman, Dan ; Wright, David ; Spalding, Martin H ; Halverson, Larry J</creator><creatorcontrib>Xie, Bo ; Bishop, Shawn ; Stessman, Dan ; Wright, David ; Spalding, Martin H ; Halverson, Larry J</creatorcontrib><description>Temperature is one of the most important environmental factors affecting the growth and survival of microorganisms and in light of current global patterns is of particular interest. Here, we highlight studies revealing how vitamin B 12 (cobalamin)-producing bacteria increase the fitness of the unicellular alga Chlamydomonas reinhardtii following an increase in environmental temperature. Heat stress represses C. reinhardtii cobalamin-independent methionine synthase ( METE) gene expression coinciding with a reduction in METE-mediated methionine synthase activity, chlorosis and cell death during heat stress. However, in the presence of cobalamin-producing bacteria or exogenous cobalamin amendments C. reinhardtii cobalamin-dependent methionine synthase METH-mediated methionine biosynthesis is functional at temperatures that result in C. reinhardtii death in the absence of cobalamin. Artificial microRNA silencing of C. reinhardtii METH expression leads to nearly complete loss of cobalamin-mediated enhancement of thermal tolerance. This suggests that methionine biosynthesis is an essential cellular mechanism for adaptation by C. reinhardtii to thermal stress. Increased fitness advantage of METH under environmentally stressful conditions could explain the selective pressure for retaining the METH gene in algae and the apparent independent loss of the METE gene in various algal species. Our results show that how an organism acclimates to a change in its abiotic environment depends critically on co-occurring species, the nature of that interaction, and how those species interactions evolve.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2013.43</identifier><identifier>PMID: 23486253</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - genetics ; 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - metabolism ; 631/326/41 ; 631/326/41/1969 ; 704/158/853 ; Algae ; Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Bacterial Physiological Phenomena ; Biomedical and Life Sciences ; Biosynthesis ; Chlamydomonas reinhardtii - drug effects ; Chlamydomonas reinhardtii - enzymology ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - microbiology ; Chlamydomonas reinhardtii - physiology ; Ecology ; Environmental factors ; Evolutionary Biology ; Gene Expression Regulation, Plant ; Heat tolerance ; Life Sciences ; Methionine - genetics ; Methionine - metabolism ; Methionine - pharmacology ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Mortality ; Original ; original-article ; Sinorhizobium meliloti - genetics ; Sinorhizobium meliloti - metabolism ; Sinorhizobium meliloti - physiology ; Stress, Physiological ; Symbiosis ; Temperature ; Thermal stress ; Vitamin B 12 - genetics ; Vitamin B 12 - metabolism ; Vitamin B 12 - pharmacology ; Vitamin B Complex - pharmacology</subject><ispartof>The ISME Journal, 2013-08, Vol.7 (8), p.1544-1555</ispartof><rights>International Society for Microbial Ecology 2013</rights><rights>Copyright Nature Publishing Group Aug 2013</rights><rights>Copyright © 2013 International Society for Microbial Ecology 2013 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3693-964806b4eccbf92e97f381c819b7b1f01217cad2a07bc871fbeff370ba24ea343</citedby><cites>FETCH-LOGICAL-c3693-964806b4eccbf92e97f381c819b7b1f01217cad2a07bc871fbeff370ba24ea343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721113/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721113/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23486253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Bo</creatorcontrib><creatorcontrib>Bishop, Shawn</creatorcontrib><creatorcontrib>Stessman, Dan</creatorcontrib><creatorcontrib>Wright, David</creatorcontrib><creatorcontrib>Spalding, Martin H</creatorcontrib><creatorcontrib>Halverson, Larry J</creatorcontrib><title>Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Temperature is one of the most important environmental factors affecting the growth and survival of microorganisms and in light of current global patterns is of particular interest. Here, we highlight studies revealing how vitamin B 12 (cobalamin)-producing bacteria increase the fitness of the unicellular alga Chlamydomonas reinhardtii following an increase in environmental temperature. Heat stress represses C. reinhardtii cobalamin-independent methionine synthase ( METE) gene expression coinciding with a reduction in METE-mediated methionine synthase activity, chlorosis and cell death during heat stress. However, in the presence of cobalamin-producing bacteria or exogenous cobalamin amendments C. reinhardtii cobalamin-dependent methionine synthase METH-mediated methionine biosynthesis is functional at temperatures that result in C. reinhardtii death in the absence of cobalamin. Artificial microRNA silencing of C. reinhardtii METH expression leads to nearly complete loss of cobalamin-mediated enhancement of thermal tolerance. This suggests that methionine biosynthesis is an essential cellular mechanism for adaptation by C. reinhardtii to thermal stress. Increased fitness advantage of METH under environmentally stressful conditions could explain the selective pressure for retaining the METH gene in algae and the apparent independent loss of the METE gene in various algal species. Our results show that how an organism acclimates to a change in its abiotic environment depends critically on co-occurring species, the nature of that interaction, and how those species interactions evolve.</description><subject>5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - genetics</subject><subject>5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - metabolism</subject><subject>631/326/41</subject><subject>631/326/41/1969</subject><subject>704/158/853</subject><subject>Algae</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Physiological Phenomena</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Chlamydomonas reinhardtii - drug effects</subject><subject>Chlamydomonas reinhardtii - enzymology</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - microbiology</subject><subject>Chlamydomonas reinhardtii - physiology</subject><subject>Ecology</subject><subject>Environmental factors</subject><subject>Evolutionary Biology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Heat tolerance</subject><subject>Life Sciences</subject><subject>Methionine - genetics</subject><subject>Methionine - metabolism</subject><subject>Methionine - pharmacology</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mortality</subject><subject>Original</subject><subject>original-article</subject><subject>Sinorhizobium meliloti - genetics</subject><subject>Sinorhizobium meliloti - metabolism</subject><subject>Sinorhizobium meliloti - physiology</subject><subject>Stress, Physiological</subject><subject>Symbiosis</subject><subject>Temperature</subject><subject>Thermal stress</subject><subject>Vitamin B 12 - genetics</subject><subject>Vitamin B 12 - metabolism</subject><subject>Vitamin B 12 - pharmacology</subject><subject>Vitamin B Complex - pharmacology</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkc1v1DAQxSNERUvhyBVZ4pzFY2fj5IIEK76kSr2Us2U7k41Xsb3YTtEe-c_xsmVVpJ7G0vvpzRu_qnoDdAWUd-9tcrhbMQp81fBn1RWINdSCC_r8_G7ZZfUypR2la9G24kV1yXjTtWzNr6rfm2lW7jAEF7xKJKL1k4pDtpbkCaNTM8lhxqi8QYJFK9Ohz8ThYFXGgegDUcQteVGzTdkaYn0uvMk2ePLL5onc26yc9eQTsHofw7AY67dEFwSjVa-qi1HNCV8_zOvqx5fPd5tv9c3t1--bjze14W3P675tOtrqBo3RY8-wFyPvwHTQa6FhpMBAGDUwRYU2nYBR4ziWb9CKNah4w6-rDyff_aJLeFOOiGqW-2idigcZlJX_K95OchvuJRcMAHgxePdgEMPPBVOWu7BEXzJLaABoD5T2hapPlIkhpYjjeQNQeWxM_m1MHhuTzdH17eNYZ_pfRQVYnYBUJL_F-Gjtk45_AC88pl0</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Xie, Bo</creator><creator>Bishop, Shawn</creator><creator>Stessman, Dan</creator><creator>Wright, David</creator><creator>Spalding, Martin H</creator><creator>Halverson, Larry J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>201308</creationdate><title>Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria</title><author>Xie, Bo ; Bishop, Shawn ; Stessman, Dan ; Wright, David ; Spalding, Martin H ; Halverson, Larry J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3693-964806b4eccbf92e97f381c819b7b1f01217cad2a07bc871fbeff370ba24ea343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - genetics</topic><topic>5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - metabolism</topic><topic>631/326/41</topic><topic>631/326/41/1969</topic><topic>704/158/853</topic><topic>Algae</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Physiological Phenomena</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Chlamydomonas reinhardtii - drug effects</topic><topic>Chlamydomonas reinhardtii - enzymology</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - microbiology</topic><topic>Chlamydomonas reinhardtii - physiology</topic><topic>Ecology</topic><topic>Environmental factors</topic><topic>Evolutionary Biology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Heat tolerance</topic><topic>Life Sciences</topic><topic>Methionine - genetics</topic><topic>Methionine - metabolism</topic><topic>Methionine - pharmacology</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mortality</topic><topic>Original</topic><topic>original-article</topic><topic>Sinorhizobium meliloti - genetics</topic><topic>Sinorhizobium meliloti - metabolism</topic><topic>Sinorhizobium meliloti - physiology</topic><topic>Stress, Physiological</topic><topic>Symbiosis</topic><topic>Temperature</topic><topic>Thermal stress</topic><topic>Vitamin B 12 - genetics</topic><topic>Vitamin B 12 - metabolism</topic><topic>Vitamin B 12 - pharmacology</topic><topic>Vitamin B Complex - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Bo</creatorcontrib><creatorcontrib>Bishop, Shawn</creatorcontrib><creatorcontrib>Stessman, Dan</creatorcontrib><creatorcontrib>Wright, David</creatorcontrib><creatorcontrib>Spalding, Martin H</creatorcontrib><creatorcontrib>Halverson, Larry J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Bo</au><au>Bishop, Shawn</au><au>Stessman, Dan</au><au>Wright, David</au><au>Spalding, Martin H</au><au>Halverson, Larry J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2013-08</date><risdate>2013</risdate><volume>7</volume><issue>8</issue><spage>1544</spage><epage>1555</epage><pages>1544-1555</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Temperature is one of the most important environmental factors affecting the growth and survival of microorganisms and in light of current global patterns is of particular interest. Here, we highlight studies revealing how vitamin B 12 (cobalamin)-producing bacteria increase the fitness of the unicellular alga Chlamydomonas reinhardtii following an increase in environmental temperature. Heat stress represses C. reinhardtii cobalamin-independent methionine synthase ( METE) gene expression coinciding with a reduction in METE-mediated methionine synthase activity, chlorosis and cell death during heat stress. However, in the presence of cobalamin-producing bacteria or exogenous cobalamin amendments C. reinhardtii cobalamin-dependent methionine synthase METH-mediated methionine biosynthesis is functional at temperatures that result in C. reinhardtii death in the absence of cobalamin. Artificial microRNA silencing of C. reinhardtii METH expression leads to nearly complete loss of cobalamin-mediated enhancement of thermal tolerance. This suggests that methionine biosynthesis is an essential cellular mechanism for adaptation by C. reinhardtii to thermal stress. Increased fitness advantage of METH under environmentally stressful conditions could explain the selective pressure for retaining the METH gene in algae and the apparent independent loss of the METE gene in various algal species. Our results show that how an organism acclimates to a change in its abiotic environment depends critically on co-occurring species, the nature of that interaction, and how those species interactions evolve.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23486253</pmid><doi>10.1038/ismej.2013.43</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2013-08, Vol.7 (8), p.1544-1555
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3721113
source PubMed (Medline); Oxford Journals Open Access Collection
subjects 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - genetics
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - metabolism
631/326/41
631/326/41/1969
704/158/853
Algae
Bacteria
Bacteria - genetics
Bacteria - metabolism
Bacterial Physiological Phenomena
Biomedical and Life Sciences
Biosynthesis
Chlamydomonas reinhardtii - drug effects
Chlamydomonas reinhardtii - enzymology
Chlamydomonas reinhardtii - genetics
Chlamydomonas reinhardtii - microbiology
Chlamydomonas reinhardtii - physiology
Ecology
Environmental factors
Evolutionary Biology
Gene Expression Regulation, Plant
Heat tolerance
Life Sciences
Methionine - genetics
Methionine - metabolism
Methionine - pharmacology
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microorganisms
Mortality
Original
original-article
Sinorhizobium meliloti - genetics
Sinorhizobium meliloti - metabolism
Sinorhizobium meliloti - physiology
Stress, Physiological
Symbiosis
Temperature
Thermal stress
Vitamin B 12 - genetics
Vitamin B 12 - metabolism
Vitamin B 12 - pharmacology
Vitamin B Complex - pharmacology
title Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlamydomonas%20reinhardtii%20thermal%20tolerance%20enhancement%20mediated%20by%20a%20mutualistic%20interaction%20with%20vitamin%20B12-producing%20bacteria&rft.jtitle=The%20ISME%20Journal&rft.au=Xie,%20Bo&rft.date=2013-08&rft.volume=7&rft.issue=8&rft.spage=1544&rft.epage=1555&rft.pages=1544-1555&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2013.43&rft_dat=%3Cproquest_pubme%3E3025670801%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3693-964806b4eccbf92e97f381c819b7b1f01217cad2a07bc871fbeff370ba24ea343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1411091009&rft_id=info:pmid/23486253&rfr_iscdi=true