Loading…

A critical role for the hippocampus and perirhinal cortex in perceptual learning of scenes and faces: complementary findings from amnesia and FMRI

It is debated whether subregions within the medial temporal lobe (MTL), in particular the hippocampus (HC) and perirhinal cortex (PrC), play domain-sensitive roles in learning. In the present study, two patients with differing degrees of MTL damage were first exposed to pairs of highly similar scene...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2013-06, Vol.33 (25), p.10490-10502
Main Authors: Mundy, Matthew E, Downing, Paul E, Dwyer, Dominic M, Honey, Robert C, Graham, Kim S
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is debated whether subregions within the medial temporal lobe (MTL), in particular the hippocampus (HC) and perirhinal cortex (PrC), play domain-sensitive roles in learning. In the present study, two patients with differing degrees of MTL damage were first exposed to pairs of highly similar scenes, faces, and dot patterns and then asked to make repeated same/different decisions to preexposed and nonexposed (novel) pairs from the three categories (Experiment 1). We measured whether patients would show a benefit of prior exposure (preexposed > nonexposed) and whether repetition of nonexposed (and preexposed) pairs at test would benefit discrimination accuracy. Although selective HC damage impaired learning of scenes, but not faces and dot patterns, broader MTL damage involving the HC and PrC compromised discrimination learning of scenes and faces but left dot pattern learning unaffected. In Experiment 2, a similar task was run in healthy young participants in the MRI scanner. Functional region-of-interest analyses revealed that posterior HC and posterior parahippocampal gyrus showed greater activity during scene pattern learning, but not face and dot pattern learning, whereas PrC, anterior HC, and posterior fusiform gyrus were recruited during discrimination learning for faces, but not scenes and dot pattern learning. Critically, activity in posterior HC and PrC, but not the other functional region-of-interest analyses, was modulated by accuracy (correct > incorrect within a preferred category). Therefore, both approaches revealed a key role for the HC and PrC in discrimination learning, which is consistent with representational accounts in which subregions in these MTL structures store complex spatial and object representations, respectively.
ISSN:0270-6474
1529-2401
1529-2401
DOI:10.1523/JNEUROSCI.2958-12.2013