Loading…

Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes

Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, w...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2004, Vol.32 (1), p.143-150
Main Authors: Nahvi, Ali, Barrick, Jeffrey E., Breaker, Ronald R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3537-bd59b6daaa69120dd6934d9c537cf9773b2f7832914d3f9b35f33977c7c251c13
cites
container_end_page 150
container_issue 1
container_start_page 143
container_title Nucleic acids research
container_volume 32
creator Nahvi, Ali
Barrick, Jeffrey E.
Breaker, Ronald R.
description Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, we provided evidence that the btuB mRNAs of Escherichia coli and Salmonella typhimurium each carry a coenzyme B12‐dependent riboswitch that causes repressed translation of the encoded cobalamin‐transport protein at elevated coenzyme concentrations. Herein, we use a phylogenetic analysis to define a consensus sequence and secondary structure model for the ligand‐ binding domain of this riboswitch class. RNA structures that conform to this model are widespread in both Gram‐positive and Gram‐negative organisms. In addition, we find that the 5′‐untranslated region (5′‐UTR) of the cobalamin biosynthesis (cob) operon of S.typhimurium carries an RNA motif that matches this consensus sequence. Biochemical and genetic characterization of this motif confirms that the RNA directly binds coenzyme B12, and that it likely serves as a genetic control element for regulating expression of the 25‐gene operon for cobalamin production in this pathogen.
doi_str_mv 10.1093/nar/gkh167
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_373277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>525392041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3537-bd59b6daaa69120dd6934d9c537cf9773b2f7832914d3f9b35f33977c7c251c13</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhS0EoiGw4Qcgi0UXSNP6MR6PFyxKVNqKSLDgJTaWx76TuJmxgz2hlF-Pq0TlsbrSPd89OlcHoeeUnFCi-Gkw6XS1WdNGPkAzyhtW1aphD9GMcCIqSur2CD3J-ZoQWlNRP0ZHtJak5oLO0IdFhPDrdgT8hjKcfBfzjZ_sGjI2CfCNd5C3CYzDKwgweYttDFOKA4YBRghTxj7gbYobk27jBPkpetSbIcOzw5yjT2_PPy4uq-X7i6vF2bKyXHBZdU6ornHGmEZRRpxrFK-dskWzvZKSd6yXLWeK1o73quOi57zsrbRMUEv5HL3e-2533QjOlijJDHqb_FiS6Gi8_lcJfq1X8YfmkrPiP0fHh_sUv-8gT3r02cIwmABxl3VLSMtU2xTw5X_gddylUH7TjJCGSCnu3F7tIZtizgn6-yCU6LuSdClJ70sq8Iu_o_9BD60UoNoDPk_w8143aaPLuRT68us3_eVCsM_83VIL_huBa54m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200607757</pqid></control><display><type>article</type><title>Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes</title><source>Open Access: PubMed Central</source><source>Oxford Journals Open Access Collection</source><creator>Nahvi, Ali ; Barrick, Jeffrey E. ; Breaker, Ronald R.</creator><creatorcontrib>Nahvi, Ali ; Barrick, Jeffrey E. ; Breaker, Ronald R.</creatorcontrib><description>Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, we provided evidence that the btuB mRNAs of Escherichia coli and Salmonella typhimurium each carry a coenzyme B12‐dependent riboswitch that causes repressed translation of the encoded cobalamin‐transport protein at elevated coenzyme concentrations. Herein, we use a phylogenetic analysis to define a consensus sequence and secondary structure model for the ligand‐ binding domain of this riboswitch class. RNA structures that conform to this model are widespread in both Gram‐positive and Gram‐negative organisms. In addition, we find that the 5′‐untranslated region (5′‐UTR) of the cobalamin biosynthesis (cob) operon of S.typhimurium carries an RNA motif that matches this consensus sequence. Biochemical and genetic characterization of this motif confirms that the RNA directly binds coenzyme B12, and that it likely serves as a genetic control element for regulating expression of the 25‐gene operon for cobalamin production in this pathogen.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkh167</identifier><identifier>PMID: 14704351</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>5' Untranslated Regions - chemistry ; 5' Untranslated Regions - genetics ; 5' Untranslated Regions - metabolism ; Bacillus subtilis - genetics ; Base Sequence ; Cobamides - biosynthesis ; Cobamides - metabolism ; Consensus Sequence - genetics ; Gene Expression Regulation, Bacterial ; Genes, Bacterial - genetics ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; Operon - genetics ; Phylogeny ; Prokaryotic Cells - metabolism ; Regulatory Sequences, Ribonucleic Acid - genetics ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; Salmonella typhimurium - genetics ; Salmonella typhimurium - metabolism ; Sequence Alignment ; Thermodynamics</subject><ispartof>Nucleic acids research, 2004, Vol.32 (1), p.143-150</ispartof><rights>Copyright National Library of Medicine - MEDLINE Abstracts Jan 1 2004</rights><rights>Copyright © 2004 Oxford University Press 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3537-bd59b6daaa69120dd6934d9c537cf9773b2f7832914d3f9b35f33977c7c251c13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC373277/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC373277/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14704351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nahvi, Ali</creatorcontrib><creatorcontrib>Barrick, Jeffrey E.</creatorcontrib><creatorcontrib>Breaker, Ronald R.</creatorcontrib><title>Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, we provided evidence that the btuB mRNAs of Escherichia coli and Salmonella typhimurium each carry a coenzyme B12‐dependent riboswitch that causes repressed translation of the encoded cobalamin‐transport protein at elevated coenzyme concentrations. Herein, we use a phylogenetic analysis to define a consensus sequence and secondary structure model for the ligand‐ binding domain of this riboswitch class. RNA structures that conform to this model are widespread in both Gram‐positive and Gram‐negative organisms. In addition, we find that the 5′‐untranslated region (5′‐UTR) of the cobalamin biosynthesis (cob) operon of S.typhimurium carries an RNA motif that matches this consensus sequence. Biochemical and genetic characterization of this motif confirms that the RNA directly binds coenzyme B12, and that it likely serves as a genetic control element for regulating expression of the 25‐gene operon for cobalamin production in this pathogen.</description><subject>5' Untranslated Regions - chemistry</subject><subject>5' Untranslated Regions - genetics</subject><subject>5' Untranslated Regions - metabolism</subject><subject>Bacillus subtilis - genetics</subject><subject>Base Sequence</subject><subject>Cobamides - biosynthesis</subject><subject>Cobamides - metabolism</subject><subject>Consensus Sequence - genetics</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Bacterial - genetics</subject><subject>Ligands</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Operon - genetics</subject><subject>Phylogeny</subject><subject>Prokaryotic Cells - metabolism</subject><subject>Regulatory Sequences, Ribonucleic Acid - genetics</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>Salmonella typhimurium - genetics</subject><subject>Salmonella typhimurium - metabolism</subject><subject>Sequence Alignment</subject><subject>Thermodynamics</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpdkUtvEzEUhS0EoiGw4Qcgi0UXSNP6MR6PFyxKVNqKSLDgJTaWx76TuJmxgz2hlF-Pq0TlsbrSPd89OlcHoeeUnFCi-Gkw6XS1WdNGPkAzyhtW1aphD9GMcCIqSur2CD3J-ZoQWlNRP0ZHtJak5oLO0IdFhPDrdgT8hjKcfBfzjZ_sGjI2CfCNd5C3CYzDKwgweYttDFOKA4YBRghTxj7gbYobk27jBPkpetSbIcOzw5yjT2_PPy4uq-X7i6vF2bKyXHBZdU6ornHGmEZRRpxrFK-dskWzvZKSd6yXLWeK1o73quOi57zsrbRMUEv5HL3e-2533QjOlijJDHqb_FiS6Gi8_lcJfq1X8YfmkrPiP0fHh_sUv-8gT3r02cIwmABxl3VLSMtU2xTw5X_gddylUH7TjJCGSCnu3F7tIZtizgn6-yCU6LuSdClJ70sq8Iu_o_9BD60UoNoDPk_w8143aaPLuRT68us3_eVCsM_83VIL_huBa54m</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Nahvi, Ali</creator><creator>Barrick, Jeffrey E.</creator><creator>Breaker, Ronald R.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2004</creationdate><title>Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes</title><author>Nahvi, Ali ; Barrick, Jeffrey E. ; Breaker, Ronald R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3537-bd59b6daaa69120dd6934d9c537cf9773b2f7832914d3f9b35f33977c7c251c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>5' Untranslated Regions - chemistry</topic><topic>5' Untranslated Regions - genetics</topic><topic>5' Untranslated Regions - metabolism</topic><topic>Bacillus subtilis - genetics</topic><topic>Base Sequence</topic><topic>Cobamides - biosynthesis</topic><topic>Cobamides - metabolism</topic><topic>Consensus Sequence - genetics</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Bacterial - genetics</topic><topic>Ligands</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Operon - genetics</topic><topic>Phylogeny</topic><topic>Prokaryotic Cells - metabolism</topic><topic>Regulatory Sequences, Ribonucleic Acid - genetics</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>Salmonella typhimurium - genetics</topic><topic>Salmonella typhimurium - metabolism</topic><topic>Sequence Alignment</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nahvi, Ali</creatorcontrib><creatorcontrib>Barrick, Jeffrey E.</creatorcontrib><creatorcontrib>Breaker, Ronald R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nahvi, Ali</au><au>Barrick, Jeffrey E.</au><au>Breaker, Ronald R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2004</date><risdate>2004</risdate><volume>32</volume><issue>1</issue><spage>143</spage><epage>150</epage><pages>143-150</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, we provided evidence that the btuB mRNAs of Escherichia coli and Salmonella typhimurium each carry a coenzyme B12‐dependent riboswitch that causes repressed translation of the encoded cobalamin‐transport protein at elevated coenzyme concentrations. Herein, we use a phylogenetic analysis to define a consensus sequence and secondary structure model for the ligand‐ binding domain of this riboswitch class. RNA structures that conform to this model are widespread in both Gram‐positive and Gram‐negative organisms. In addition, we find that the 5′‐untranslated region (5′‐UTR) of the cobalamin biosynthesis (cob) operon of S.typhimurium carries an RNA motif that matches this consensus sequence. Biochemical and genetic characterization of this motif confirms that the RNA directly binds coenzyme B12, and that it likely serves as a genetic control element for regulating expression of the 25‐gene operon for cobalamin production in this pathogen.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>14704351</pmid><doi>10.1093/nar/gkh167</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2004, Vol.32 (1), p.143-150
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_373277
source Open Access: PubMed Central; Oxford Journals Open Access Collection
subjects 5' Untranslated Regions - chemistry
5' Untranslated Regions - genetics
5' Untranslated Regions - metabolism
Bacillus subtilis - genetics
Base Sequence
Cobamides - biosynthesis
Cobamides - metabolism
Consensus Sequence - genetics
Gene Expression Regulation, Bacterial
Genes, Bacterial - genetics
Ligands
Molecular Sequence Data
Nucleic Acid Conformation
Operon - genetics
Phylogeny
Prokaryotic Cells - metabolism
Regulatory Sequences, Ribonucleic Acid - genetics
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
Salmonella typhimurium - genetics
Salmonella typhimurium - metabolism
Sequence Alignment
Thermodynamics
title Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coenzyme%20B12%20riboswitches%20are%20widespread%20genetic%20control%20elements%20in%20prokaryotes&rft.jtitle=Nucleic%20acids%20research&rft.au=Nahvi,%20Ali&rft.date=2004&rft.volume=32&rft.issue=1&rft.spage=143&rft.epage=150&rft.pages=143-150&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkh167&rft_dat=%3Cproquest_pubme%3E525392041%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3537-bd59b6daaa69120dd6934d9c537cf9773b2f7832914d3f9b35f33977c7c251c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200607757&rft_id=info:pmid/14704351&rfr_iscdi=true