Loading…
Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes
Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, w...
Saved in:
Published in: | Nucleic acids research 2004, Vol.32 (1), p.143-150 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3537-bd59b6daaa69120dd6934d9c537cf9773b2f7832914d3f9b35f33977c7c251c13 |
---|---|
cites | |
container_end_page | 150 |
container_issue | 1 |
container_start_page | 143 |
container_title | Nucleic acids research |
container_volume | 32 |
creator | Nahvi, Ali Barrick, Jeffrey E. Breaker, Ronald R. |
description | Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, we provided evidence that the btuB mRNAs of Escherichia coli and Salmonella typhimurium each carry a coenzyme B12‐dependent riboswitch that causes repressed translation of the encoded cobalamin‐transport protein at elevated coenzyme concentrations. Herein, we use a phylogenetic analysis to define a consensus sequence and secondary structure model for the ligand‐ binding domain of this riboswitch class. RNA structures that conform to this model are widespread in both Gram‐positive and Gram‐negative organisms. In addition, we find that the 5′‐untranslated region (5′‐UTR) of the cobalamin biosynthesis (cob) operon of S.typhimurium carries an RNA motif that matches this consensus sequence. Biochemical and genetic characterization of this motif confirms that the RNA directly binds coenzyme B12, and that it likely serves as a genetic control element for regulating expression of the 25‐gene operon for cobalamin production in this pathogen. |
doi_str_mv | 10.1093/nar/gkh167 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_373277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>525392041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3537-bd59b6daaa69120dd6934d9c537cf9773b2f7832914d3f9b35f33977c7c251c13</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhS0EoiGw4Qcgi0UXSNP6MR6PFyxKVNqKSLDgJTaWx76TuJmxgz2hlF-Pq0TlsbrSPd89OlcHoeeUnFCi-Gkw6XS1WdNGPkAzyhtW1aphD9GMcCIqSur2CD3J-ZoQWlNRP0ZHtJak5oLO0IdFhPDrdgT8hjKcfBfzjZ_sGjI2CfCNd5C3CYzDKwgweYttDFOKA4YBRghTxj7gbYobk27jBPkpetSbIcOzw5yjT2_PPy4uq-X7i6vF2bKyXHBZdU6ornHGmEZRRpxrFK-dskWzvZKSd6yXLWeK1o73quOi57zsrbRMUEv5HL3e-2533QjOlijJDHqb_FiS6Gi8_lcJfq1X8YfmkrPiP0fHh_sUv-8gT3r02cIwmABxl3VLSMtU2xTw5X_gddylUH7TjJCGSCnu3F7tIZtizgn6-yCU6LuSdClJ70sq8Iu_o_9BD60UoNoDPk_w8143aaPLuRT68us3_eVCsM_83VIL_huBa54m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200607757</pqid></control><display><type>article</type><title>Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes</title><source>Open Access: PubMed Central</source><source>Oxford Journals Open Access Collection</source><creator>Nahvi, Ali ; Barrick, Jeffrey E. ; Breaker, Ronald R.</creator><creatorcontrib>Nahvi, Ali ; Barrick, Jeffrey E. ; Breaker, Ronald R.</creatorcontrib><description>Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, we provided evidence that the btuB mRNAs of Escherichia coli and Salmonella typhimurium each carry a coenzyme B12‐dependent riboswitch that causes repressed translation of the encoded cobalamin‐transport protein at elevated coenzyme concentrations. Herein, we use a phylogenetic analysis to define a consensus sequence and secondary structure model for the ligand‐ binding domain of this riboswitch class. RNA structures that conform to this model are widespread in both Gram‐positive and Gram‐negative organisms. In addition, we find that the 5′‐untranslated region (5′‐UTR) of the cobalamin biosynthesis (cob) operon of S.typhimurium carries an RNA motif that matches this consensus sequence. Biochemical and genetic characterization of this motif confirms that the RNA directly binds coenzyme B12, and that it likely serves as a genetic control element for regulating expression of the 25‐gene operon for cobalamin production in this pathogen.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkh167</identifier><identifier>PMID: 14704351</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>5' Untranslated Regions - chemistry ; 5' Untranslated Regions - genetics ; 5' Untranslated Regions - metabolism ; Bacillus subtilis - genetics ; Base Sequence ; Cobamides - biosynthesis ; Cobamides - metabolism ; Consensus Sequence - genetics ; Gene Expression Regulation, Bacterial ; Genes, Bacterial - genetics ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; Operon - genetics ; Phylogeny ; Prokaryotic Cells - metabolism ; Regulatory Sequences, Ribonucleic Acid - genetics ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; Salmonella typhimurium - genetics ; Salmonella typhimurium - metabolism ; Sequence Alignment ; Thermodynamics</subject><ispartof>Nucleic acids research, 2004, Vol.32 (1), p.143-150</ispartof><rights>Copyright National Library of Medicine - MEDLINE Abstracts Jan 1 2004</rights><rights>Copyright © 2004 Oxford University Press 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3537-bd59b6daaa69120dd6934d9c537cf9773b2f7832914d3f9b35f33977c7c251c13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC373277/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC373277/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14704351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nahvi, Ali</creatorcontrib><creatorcontrib>Barrick, Jeffrey E.</creatorcontrib><creatorcontrib>Breaker, Ronald R.</creatorcontrib><title>Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, we provided evidence that the btuB mRNAs of Escherichia coli and Salmonella typhimurium each carry a coenzyme B12‐dependent riboswitch that causes repressed translation of the encoded cobalamin‐transport protein at elevated coenzyme concentrations. Herein, we use a phylogenetic analysis to define a consensus sequence and secondary structure model for the ligand‐ binding domain of this riboswitch class. RNA structures that conform to this model are widespread in both Gram‐positive and Gram‐negative organisms. In addition, we find that the 5′‐untranslated region (5′‐UTR) of the cobalamin biosynthesis (cob) operon of S.typhimurium carries an RNA motif that matches this consensus sequence. Biochemical and genetic characterization of this motif confirms that the RNA directly binds coenzyme B12, and that it likely serves as a genetic control element for regulating expression of the 25‐gene operon for cobalamin production in this pathogen.</description><subject>5' Untranslated Regions - chemistry</subject><subject>5' Untranslated Regions - genetics</subject><subject>5' Untranslated Regions - metabolism</subject><subject>Bacillus subtilis - genetics</subject><subject>Base Sequence</subject><subject>Cobamides - biosynthesis</subject><subject>Cobamides - metabolism</subject><subject>Consensus Sequence - genetics</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Bacterial - genetics</subject><subject>Ligands</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Operon - genetics</subject><subject>Phylogeny</subject><subject>Prokaryotic Cells - metabolism</subject><subject>Regulatory Sequences, Ribonucleic Acid - genetics</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>Salmonella typhimurium - genetics</subject><subject>Salmonella typhimurium - metabolism</subject><subject>Sequence Alignment</subject><subject>Thermodynamics</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpdkUtvEzEUhS0EoiGw4Qcgi0UXSNP6MR6PFyxKVNqKSLDgJTaWx76TuJmxgz2hlF-Pq0TlsbrSPd89OlcHoeeUnFCi-Gkw6XS1WdNGPkAzyhtW1aphD9GMcCIqSur2CD3J-ZoQWlNRP0ZHtJak5oLO0IdFhPDrdgT8hjKcfBfzjZ_sGjI2CfCNd5C3CYzDKwgweYttDFOKA4YBRghTxj7gbYobk27jBPkpetSbIcOzw5yjT2_PPy4uq-X7i6vF2bKyXHBZdU6ornHGmEZRRpxrFK-dskWzvZKSd6yXLWeK1o73quOi57zsrbRMUEv5HL3e-2533QjOlijJDHqb_FiS6Gi8_lcJfq1X8YfmkrPiP0fHh_sUv-8gT3r02cIwmABxl3VLSMtU2xTw5X_gddylUH7TjJCGSCnu3F7tIZtizgn6-yCU6LuSdClJ70sq8Iu_o_9BD60UoNoDPk_w8143aaPLuRT68us3_eVCsM_83VIL_huBa54m</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Nahvi, Ali</creator><creator>Barrick, Jeffrey E.</creator><creator>Breaker, Ronald R.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2004</creationdate><title>Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes</title><author>Nahvi, Ali ; Barrick, Jeffrey E. ; Breaker, Ronald R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3537-bd59b6daaa69120dd6934d9c537cf9773b2f7832914d3f9b35f33977c7c251c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>5' Untranslated Regions - chemistry</topic><topic>5' Untranslated Regions - genetics</topic><topic>5' Untranslated Regions - metabolism</topic><topic>Bacillus subtilis - genetics</topic><topic>Base Sequence</topic><topic>Cobamides - biosynthesis</topic><topic>Cobamides - metabolism</topic><topic>Consensus Sequence - genetics</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Bacterial - genetics</topic><topic>Ligands</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Operon - genetics</topic><topic>Phylogeny</topic><topic>Prokaryotic Cells - metabolism</topic><topic>Regulatory Sequences, Ribonucleic Acid - genetics</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>Salmonella typhimurium - genetics</topic><topic>Salmonella typhimurium - metabolism</topic><topic>Sequence Alignment</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nahvi, Ali</creatorcontrib><creatorcontrib>Barrick, Jeffrey E.</creatorcontrib><creatorcontrib>Breaker, Ronald R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nahvi, Ali</au><au>Barrick, Jeffrey E.</au><au>Breaker, Ronald R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2004</date><risdate>2004</risdate><volume>32</volume><issue>1</issue><spage>143</spage><epage>150</epage><pages>143-150</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, we provided evidence that the btuB mRNAs of Escherichia coli and Salmonella typhimurium each carry a coenzyme B12‐dependent riboswitch that causes repressed translation of the encoded cobalamin‐transport protein at elevated coenzyme concentrations. Herein, we use a phylogenetic analysis to define a consensus sequence and secondary structure model for the ligand‐ binding domain of this riboswitch class. RNA structures that conform to this model are widespread in both Gram‐positive and Gram‐negative organisms. In addition, we find that the 5′‐untranslated region (5′‐UTR) of the cobalamin biosynthesis (cob) operon of S.typhimurium carries an RNA motif that matches this consensus sequence. Biochemical and genetic characterization of this motif confirms that the RNA directly binds coenzyme B12, and that it likely serves as a genetic control element for regulating expression of the 25‐gene operon for cobalamin production in this pathogen.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>14704351</pmid><doi>10.1093/nar/gkh167</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2004, Vol.32 (1), p.143-150 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_373277 |
source | Open Access: PubMed Central; Oxford Journals Open Access Collection |
subjects | 5' Untranslated Regions - chemistry 5' Untranslated Regions - genetics 5' Untranslated Regions - metabolism Bacillus subtilis - genetics Base Sequence Cobamides - biosynthesis Cobamides - metabolism Consensus Sequence - genetics Gene Expression Regulation, Bacterial Genes, Bacterial - genetics Ligands Molecular Sequence Data Nucleic Acid Conformation Operon - genetics Phylogeny Prokaryotic Cells - metabolism Regulatory Sequences, Ribonucleic Acid - genetics RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA, Bacterial - metabolism Salmonella typhimurium - genetics Salmonella typhimurium - metabolism Sequence Alignment Thermodynamics |
title | Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coenzyme%20B12%20riboswitches%20are%20widespread%20genetic%20control%20elements%20in%20prokaryotes&rft.jtitle=Nucleic%20acids%20research&rft.au=Nahvi,%20Ali&rft.date=2004&rft.volume=32&rft.issue=1&rft.spage=143&rft.epage=150&rft.pages=143-150&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkh167&rft_dat=%3Cproquest_pubme%3E525392041%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3537-bd59b6daaa69120dd6934d9c537cf9773b2f7832914d3f9b35f33977c7c251c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200607757&rft_id=info:pmid/14704351&rfr_iscdi=true |