Loading…
Constructing higher-order miRNA-mRNA interaction networks in prostate cancer via hypergraph-based learning
Dysregulation of genetic factors such as microRNAs (miRNAs) and mRNAs has been widely shown to be associated with cancer progression and development. In particular, miRNAs and mRNAs cooperate to affect biological processes, including tumorigenesis. The complexity of miRNA-mRNA interactions presents...
Saved in:
Published in: | BMC systems biology 2013-06, Vol.7 (1), p.47-47, Article 47 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dysregulation of genetic factors such as microRNAs (miRNAs) and mRNAs has been widely shown to be associated with cancer progression and development. In particular, miRNAs and mRNAs cooperate to affect biological processes, including tumorigenesis. The complexity of miRNA-mRNA interactions presents a major barrier to identifying their co-regulatory roles and functional effects. Thus, by computationally modeling these complex relationships, it may be possible to infer the gene interaction networks underlying complicated biological processes.
We propose a data-driven, hypergraph structural method for constructing higher-order miRNA-mRNA interaction networks from cancer genomic profiles. The proposed model explicitly characterizes higher-order relationships among genetic factors, from which cooperative gene activities in biological processes may be identified. The proposed model is learned by iteration of structure and parameter learning. The structure learning efficiently constructs a hypergraph structure by generating putative hyperedges representing complex miRNA-mRNA modules. It adopts an evolutionary method based on information-theoretic criteria. In the parameter learning phase, the constructed hypergraph is refined by updating the hyperedge weights using the gradient descent method. From the model, we produce biologically relevant higher-order interaction networks showing the properties of primary and metastatic prostate cancer, as candidates of potential miRNA-mRNA regulatory circuits.
Our approach focuses on potential cancer-specific interactions reflecting higher-order relationships between miRNAs and mRNAs from expression profiles. The constructed miRNA-mRNA interaction networks show oncogenic or tumor suppression characteristics, which are known to be directly associated with prostate cancer progression. Therefore, the hypergraph-based model can assist hypothesis formulation for the molecular pathogenesis of cancer. |
---|---|
ISSN: | 1752-0509 1752-0509 |
DOI: | 10.1186/1752-0509-7-47 |