Loading…
Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II
An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and pr...
Saved in:
Published in: | Biophysical journal 2013-08, Vol.105 (3), p.767-775 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313 |
---|---|
cites | cdi_FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313 |
container_end_page | 775 |
container_issue | 3 |
container_start_page | 767 |
container_title | Biophysical journal |
container_volume | 105 |
creator | Wang, Beibei Predeus, Alexander V. Burton, Zachary F. Feig, Michael |
description | An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing. |
doi_str_mv | 10.1016/j.bpj.2013.05.060 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3736665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349513006887</els_id><sourcerecordid>3045850281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313</originalsourceid><addsrcrecordid>eNqFks1u1DAURiMEokPhAdhAJDZsEq7jn0yEhFQNpR1pBIi2S2Q5zk3qUcYebKdS34Zn4clwNKUCFrCyZB9_up-Ps-w5gZIAEW-2ZbvflhUQWgIvQcCDbEE4qwqApXiYLQBAFJQ1_Ch7EsIWgFQcyOPsqKINJbRii-zrqUU_YDQ6V7bLL6KfdJy8GvP3GJUZQ-76PF5jfunNMKAvNs7t89XogrFD2lQ2mGiczY398f3Lx5P8sxtvd-hVwHy9fpo96tUY8NndepxdfTi9XJ0Xm09n69XJptCcilgIJjQ0nDJoe8WUVpopjg1DnXrUKBoOSGFJlgx422HN-qptK9aC6gTS1OQ4e3fI3U_tDjuNNqYKcu_NTvlb6ZSRf55Ycy0HdyNpTYUQPAW8vgvw7tuEIcqdCRrHUVl0U5CEwzweF_T_KEtCBGtYndBXf6FbN3mbXmKmSFNT4MtEkQOlvQvBY38_NwE5e5ZbmTzL2bMELpPndOfF74Xvb_wSm4CXB6BXTqrBmyCvLlICT5-AUFLPEW8PBCYxNwa9DNqg1dgZjzrKzpl_DPATKqzBhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1421973058</pqid></control><display><type>article</type><title>Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II</title><source>PubMed Central</source><creator>Wang, Beibei ; Predeus, Alexander V. ; Burton, Zachary F. ; Feig, Michael</creator><creatorcontrib>Wang, Beibei ; Predeus, Alexander V. ; Burton, Zachary F. ; Feig, Michael</creatorcontrib><description>An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2013.05.060</identifier><identifier>PMID: 23931324</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>active sites ; Amino Acid Sequence ; Atoms & subatomic particles ; Binding Sites ; Catalysis ; catalytic activity ; Deoxyribonucleotides - chemistry ; Deoxyribonucleotides - metabolism ; DNA-directed RNA polymerase ; Eukaryotes ; eukaryotic cells ; molecular dynamics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Molecules ; nucleoside-triphosphate phosphatase ; prokaryotic cells ; Protein Structure, Tertiary ; Proteins and Nucleic Acids ; RNA polymerase ; RNA Polymerase II - chemistry ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Biophysical journal, 2013-08, Vol.105 (3), p.767-775</ispartof><rights>2013 Biophysical Society</rights><rights>Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Aug 6, 2013</rights><rights>2013 by the Biophysical Society. 2013 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313</citedby><cites>FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736665/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736665/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23931324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Beibei</creatorcontrib><creatorcontrib>Predeus, Alexander V.</creatorcontrib><creatorcontrib>Burton, Zachary F.</creatorcontrib><creatorcontrib>Feig, Michael</creatorcontrib><title>Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing.</description><subject>active sites</subject><subject>Amino Acid Sequence</subject><subject>Atoms & subatomic particles</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>catalytic activity</subject><subject>Deoxyribonucleotides - chemistry</subject><subject>Deoxyribonucleotides - metabolism</subject><subject>DNA-directed RNA polymerase</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>nucleoside-triphosphate phosphatase</subject><subject>prokaryotic cells</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins and Nucleic Acids</subject><subject>RNA polymerase</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFks1u1DAURiMEokPhAdhAJDZsEq7jn0yEhFQNpR1pBIi2S2Q5zk3qUcYebKdS34Zn4clwNKUCFrCyZB9_up-Ps-w5gZIAEW-2ZbvflhUQWgIvQcCDbEE4qwqApXiYLQBAFJQ1_Ch7EsIWgFQcyOPsqKINJbRii-zrqUU_YDQ6V7bLL6KfdJy8GvP3GJUZQ-76PF5jfunNMKAvNs7t89XogrFD2lQ2mGiczY398f3Lx5P8sxtvd-hVwHy9fpo96tUY8NndepxdfTi9XJ0Xm09n69XJptCcilgIJjQ0nDJoe8WUVpopjg1DnXrUKBoOSGFJlgx422HN-qptK9aC6gTS1OQ4e3fI3U_tDjuNNqYKcu_NTvlb6ZSRf55Ycy0HdyNpTYUQPAW8vgvw7tuEIcqdCRrHUVl0U5CEwzweF_T_KEtCBGtYndBXf6FbN3mbXmKmSFNT4MtEkQOlvQvBY38_NwE5e5ZbmTzL2bMELpPndOfF74Xvb_wSm4CXB6BXTqrBmyCvLlICT5-AUFLPEW8PBCYxNwa9DNqg1dgZjzrKzpl_DPATKqzBhg</recordid><startdate>20130806</startdate><enddate>20130806</enddate><creator>Wang, Beibei</creator><creator>Predeus, Alexander V.</creator><creator>Burton, Zachary F.</creator><creator>Feig, Michael</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130806</creationdate><title>Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II</title><author>Wang, Beibei ; Predeus, Alexander V. ; Burton, Zachary F. ; Feig, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>active sites</topic><topic>Amino Acid Sequence</topic><topic>Atoms & subatomic particles</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>catalytic activity</topic><topic>Deoxyribonucleotides - chemistry</topic><topic>Deoxyribonucleotides - metabolism</topic><topic>DNA-directed RNA polymerase</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>nucleoside-triphosphate phosphatase</topic><topic>prokaryotic cells</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins and Nucleic Acids</topic><topic>RNA polymerase</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Beibei</creatorcontrib><creatorcontrib>Predeus, Alexander V.</creatorcontrib><creatorcontrib>Burton, Zachary F.</creatorcontrib><creatorcontrib>Feig, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Beibei</au><au>Predeus, Alexander V.</au><au>Burton, Zachary F.</au><au>Feig, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2013-08-06</date><risdate>2013</risdate><volume>105</volume><issue>3</issue><spage>767</spage><epage>775</epage><pages>767-775</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23931324</pmid><doi>10.1016/j.bpj.2013.05.060</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2013-08, Vol.105 (3), p.767-775 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3736665 |
source | PubMed Central |
subjects | active sites Amino Acid Sequence Atoms & subatomic particles Binding Sites Catalysis catalytic activity Deoxyribonucleotides - chemistry Deoxyribonucleotides - metabolism DNA-directed RNA polymerase Eukaryotes eukaryotic cells molecular dynamics Molecular Dynamics Simulation Molecular Sequence Data Molecules nucleoside-triphosphate phosphatase prokaryotic cells Protein Structure, Tertiary Proteins and Nucleic Acids RNA polymerase RNA Polymerase II - chemistry RNA Polymerase II - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism |
title | Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20and%20Structural%20Details%20of%20the%20Trigger-Loop%20Closing%20Transition%20in%C2%A0RNA%20Polymerase%20II&rft.jtitle=Biophysical%20journal&rft.au=Wang,%20Beibei&rft.date=2013-08-06&rft.volume=105&rft.issue=3&rft.spage=767&rft.epage=775&rft.pages=767-775&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2013.05.060&rft_dat=%3Cproquest_pubme%3E3045850281%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1421973058&rft_id=info:pmid/23931324&rfr_iscdi=true |