Loading…

Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II

An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and pr...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2013-08, Vol.105 (3), p.767-775
Main Authors: Wang, Beibei, Predeus, Alexander V., Burton, Zachary F., Feig, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313
cites cdi_FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313
container_end_page 775
container_issue 3
container_start_page 767
container_title Biophysical journal
container_volume 105
creator Wang, Beibei
Predeus, Alexander V.
Burton, Zachary F.
Feig, Michael
description An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing.
doi_str_mv 10.1016/j.bpj.2013.05.060
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3736665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349513006887</els_id><sourcerecordid>3045850281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313</originalsourceid><addsrcrecordid>eNqFks1u1DAURiMEokPhAdhAJDZsEq7jn0yEhFQNpR1pBIi2S2Q5zk3qUcYebKdS34Zn4clwNKUCFrCyZB9_up-Ps-w5gZIAEW-2ZbvflhUQWgIvQcCDbEE4qwqApXiYLQBAFJQ1_Ch7EsIWgFQcyOPsqKINJbRii-zrqUU_YDQ6V7bLL6KfdJy8GvP3GJUZQ-76PF5jfunNMKAvNs7t89XogrFD2lQ2mGiczY398f3Lx5P8sxtvd-hVwHy9fpo96tUY8NndepxdfTi9XJ0Xm09n69XJptCcilgIJjQ0nDJoe8WUVpopjg1DnXrUKBoOSGFJlgx422HN-qptK9aC6gTS1OQ4e3fI3U_tDjuNNqYKcu_NTvlb6ZSRf55Ycy0HdyNpTYUQPAW8vgvw7tuEIcqdCRrHUVl0U5CEwzweF_T_KEtCBGtYndBXf6FbN3mbXmKmSFNT4MtEkQOlvQvBY38_NwE5e5ZbmTzL2bMELpPndOfF74Xvb_wSm4CXB6BXTqrBmyCvLlICT5-AUFLPEW8PBCYxNwa9DNqg1dgZjzrKzpl_DPATKqzBhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1421973058</pqid></control><display><type>article</type><title>Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II</title><source>PubMed Central</source><creator>Wang, Beibei ; Predeus, Alexander V. ; Burton, Zachary F. ; Feig, Michael</creator><creatorcontrib>Wang, Beibei ; Predeus, Alexander V. ; Burton, Zachary F. ; Feig, Michael</creatorcontrib><description>An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2013.05.060</identifier><identifier>PMID: 23931324</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>active sites ; Amino Acid Sequence ; Atoms &amp; subatomic particles ; Binding Sites ; Catalysis ; catalytic activity ; Deoxyribonucleotides - chemistry ; Deoxyribonucleotides - metabolism ; DNA-directed RNA polymerase ; Eukaryotes ; eukaryotic cells ; molecular dynamics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Molecules ; nucleoside-triphosphate phosphatase ; prokaryotic cells ; Protein Structure, Tertiary ; Proteins and Nucleic Acids ; RNA polymerase ; RNA Polymerase II - chemistry ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Biophysical journal, 2013-08, Vol.105 (3), p.767-775</ispartof><rights>2013 Biophysical Society</rights><rights>Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Aug 6, 2013</rights><rights>2013 by the Biophysical Society. 2013 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313</citedby><cites>FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736665/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736665/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23931324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Beibei</creatorcontrib><creatorcontrib>Predeus, Alexander V.</creatorcontrib><creatorcontrib>Burton, Zachary F.</creatorcontrib><creatorcontrib>Feig, Michael</creatorcontrib><title>Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing.</description><subject>active sites</subject><subject>Amino Acid Sequence</subject><subject>Atoms &amp; subatomic particles</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>catalytic activity</subject><subject>Deoxyribonucleotides - chemistry</subject><subject>Deoxyribonucleotides - metabolism</subject><subject>DNA-directed RNA polymerase</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>nucleoside-triphosphate phosphatase</subject><subject>prokaryotic cells</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins and Nucleic Acids</subject><subject>RNA polymerase</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFks1u1DAURiMEokPhAdhAJDZsEq7jn0yEhFQNpR1pBIi2S2Q5zk3qUcYebKdS34Zn4clwNKUCFrCyZB9_up-Ps-w5gZIAEW-2ZbvflhUQWgIvQcCDbEE4qwqApXiYLQBAFJQ1_Ch7EsIWgFQcyOPsqKINJbRii-zrqUU_YDQ6V7bLL6KfdJy8GvP3GJUZQ-76PF5jfunNMKAvNs7t89XogrFD2lQ2mGiczY398f3Lx5P8sxtvd-hVwHy9fpo96tUY8NndepxdfTi9XJ0Xm09n69XJptCcilgIJjQ0nDJoe8WUVpopjg1DnXrUKBoOSGFJlgx422HN-qptK9aC6gTS1OQ4e3fI3U_tDjuNNqYKcu_NTvlb6ZSRf55Ycy0HdyNpTYUQPAW8vgvw7tuEIcqdCRrHUVl0U5CEwzweF_T_KEtCBGtYndBXf6FbN3mbXmKmSFNT4MtEkQOlvQvBY38_NwE5e5ZbmTzL2bMELpPndOfF74Xvb_wSm4CXB6BXTqrBmyCvLlICT5-AUFLPEW8PBCYxNwa9DNqg1dgZjzrKzpl_DPATKqzBhg</recordid><startdate>20130806</startdate><enddate>20130806</enddate><creator>Wang, Beibei</creator><creator>Predeus, Alexander V.</creator><creator>Burton, Zachary F.</creator><creator>Feig, Michael</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130806</creationdate><title>Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II</title><author>Wang, Beibei ; Predeus, Alexander V. ; Burton, Zachary F. ; Feig, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>active sites</topic><topic>Amino Acid Sequence</topic><topic>Atoms &amp; subatomic particles</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>catalytic activity</topic><topic>Deoxyribonucleotides - chemistry</topic><topic>Deoxyribonucleotides - metabolism</topic><topic>DNA-directed RNA polymerase</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>nucleoside-triphosphate phosphatase</topic><topic>prokaryotic cells</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins and Nucleic Acids</topic><topic>RNA polymerase</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Beibei</creatorcontrib><creatorcontrib>Predeus, Alexander V.</creatorcontrib><creatorcontrib>Burton, Zachary F.</creatorcontrib><creatorcontrib>Feig, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Beibei</au><au>Predeus, Alexander V.</au><au>Burton, Zachary F.</au><au>Feig, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2013-08-06</date><risdate>2013</risdate><volume>105</volume><issue>3</issue><spage>767</spage><epage>775</epage><pages>767-775</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23931324</pmid><doi>10.1016/j.bpj.2013.05.060</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2013-08, Vol.105 (3), p.767-775
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3736665
source PubMed Central
subjects active sites
Amino Acid Sequence
Atoms & subatomic particles
Binding Sites
Catalysis
catalytic activity
Deoxyribonucleotides - chemistry
Deoxyribonucleotides - metabolism
DNA-directed RNA polymerase
Eukaryotes
eukaryotic cells
molecular dynamics
Molecular Dynamics Simulation
Molecular Sequence Data
Molecules
nucleoside-triphosphate phosphatase
prokaryotic cells
Protein Structure, Tertiary
Proteins and Nucleic Acids
RNA polymerase
RNA Polymerase II - chemistry
RNA Polymerase II - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
title Energetic and Structural Details of the Trigger-Loop Closing Transition in RNA Polymerase II
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20and%20Structural%20Details%20of%20the%20Trigger-Loop%20Closing%20Transition%20in%C2%A0RNA%20Polymerase%20II&rft.jtitle=Biophysical%20journal&rft.au=Wang,%20Beibei&rft.date=2013-08-06&rft.volume=105&rft.issue=3&rft.spage=767&rft.epage=775&rft.pages=767-775&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2013.05.060&rft_dat=%3Cproquest_pubme%3E3045850281%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-646c095340bfa4acac4a5e94ec0867e6950e30818405bde74f2bb24b0ad6e3313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1421973058&rft_id=info:pmid/23931324&rfr_iscdi=true