Loading…

Drosophila as a Model for Intractable Epilepsy: Gilgamesh Suppresses Seizures in parabss1 Heterozygote Flies

Abstract Intractable epilepsies, that is, seizure disorders that do not respond to currently available therapies, are difficult, often tragic, neurological disorders. Na+ channelopathies have been implicated in some intractable epilepsies, including Dravet syndrome (Dravet 1978), but little progress...

Full description

Saved in:
Bibliographic Details
Published in:G3 : genes - genomes - genetics 2013-08, Vol.3 (8), p.1399-1407
Main Authors: Howlett, Iris C, Rusan, Zeid M, Parker, Louise, Tanouye, Mark A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Intractable epilepsies, that is, seizure disorders that do not respond to currently available therapies, are difficult, often tragic, neurological disorders. Na+ channelopathies have been implicated in some intractable epilepsies, including Dravet syndrome (Dravet 1978), but little progress has been forthcoming in therapeutics. Here we examine a Drosophila model for intractable epilepsy, the Na+ channel gain-of-function mutant parabss1 that resembles Dravet syndrome in some aspects (parker et al. 2011a). In particular, we identify second-site mutations that interact with parabss1, seizure enhancers, and seizure suppressors. We describe one seizure-enhancer mutation named charlatan (chn). The chn gene normally encodes an Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription factor transcriptional repressor of neuronal-specific genes. We identify a second-site seizure-suppressor mutation, gilgamesh (gish), that reduces the severity of several seizure-like phenotypes of parabss1/+ heterozygotes. The gish gene normally encodes the Drosophila ortholog of casein kinase CK1g3, a member of the CK1 family of serine-threonine kinases. We suggest that CK1g3 is an unexpected but promising new target for seizure therapeutics.
ISSN:2160-1836
2160-1836
DOI:10.1534/g3.113.006130