Loading…
Latest developments in experimental and computational approaches to characterize protein-lipid interactions
Understanding the functional roles of all the molecules in cells is an ultimate goal of modern biology. An important facet is to understand the functional contributions from intermolecular interactions, both within a class of molecules (e.g. protein–protein) or between classes (e.g. protein‐DNA). Wh...
Saved in:
Published in: | Proteomics (Weinheim) 2012-11, Vol.12 (22), p.3273-3285 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding the functional roles of all the molecules in cells is an ultimate goal of modern biology. An important facet is to understand the functional contributions from intermolecular interactions, both within a class of molecules (e.g. protein–protein) or between classes (e.g. protein‐DNA). While the technologies for analyzing protein–protein and protein–DNA interactions are well established, the field of protein–lipid interactions is still relatively nascent. Here, we review the current status of the experimental and computational approaches for detecting and analyzing protein–lipid interactions. Experimental technologies fall into two principal categories, namely solution‐based and array‐based methods. Computational methods include large–scale data‐driven analyses and predictions/dynamic simulations based on prior knowledge of experimentally identified interactions. Advances in the experimental technologies have led to improved computational analyses and vice versa, thereby furthering our understanding of protein–lipid interactions and their importance in biological systems. |
---|---|
ISSN: | 1615-9853 1615-9861 |
DOI: | 10.1002/pmic.201200255 |