Loading…
A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS
The KRAS gain-of-function mutation confers intrinsic resistance to targeted anti-cancer drugs and cytotoxic chemotherapeutic agents, ultimately leading to treatment failure. KRAS mutation frequency in lung adenocarcinoma is ~15-30%. Novel therapeutic strategies should be developed to improve clinica...
Saved in:
Published in: | Cancer biology & therapy 2013-07, Vol.14 (7), p.597-605 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The KRAS gain-of-function mutation confers intrinsic resistance to targeted anti-cancer drugs and cytotoxic chemotherapeutic agents, ultimately leading to treatment failure. KRAS mutation frequency in lung adenocarcinoma is ~15-30%. Novel therapeutic strategies should be developed to improve clinical outcomes in these cases. Deregulation of the p16/cyclin-dependent kinase (CDK) 4/retinoblastoma (Rb) pathway is frequently observed in various cancers and it represents an attractive therapeutic target. We compared the anti-tumor efficacy of genetically knocked-down CDK4 and a pharmacological inhibitor of CDK4/6, CINK4, in KRAS mutation-positive lung adenocarcinoma cells. We also investigated changes in anti-proliferative activity and downstream molecules with these treatments in combination with paclitaxel. CDK4 short interfering RNA (siRNA) significantly increased paclitaxel sensitivity in KRAS mutation-positive H23 cells. CINK4 demonstrated concentration- and time-dependent anti-proliferative activity in 5 adenocarcinoma lines. CINK4 induced G
1
arrest by downregulating the p16/cyclin D1/Rb pathway, resulting in apoptotic induction via increased expression of cleaved caspase3, cleaved PARP and Bax. Combined CINK4 and paclitaxel produced synergistic anti-proliferative activity and increased apoptosis through reduced cyclin D1 and Bcl-2 in KRAS mutation-positive cancer cells. These data suggest CDK4 is a promising target for development of anti-cancer drugs and CINK4 combined with paclitaxel may be an effective therapeutic strategy for enhancing anti-tumor efficacy in KRAS mutation-positive lung adenocarcinoma. |
---|---|
ISSN: | 1538-4047 1555-8576 |
DOI: | 10.4161/cbt.24592 |