Loading…

A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS

The KRAS gain-of-function mutation confers intrinsic resistance to targeted anti-cancer drugs and cytotoxic chemotherapeutic agents, ultimately leading to treatment failure. KRAS mutation frequency in lung adenocarcinoma is ~15-30%. Novel therapeutic strategies should be developed to improve clinica...

Full description

Saved in:
Bibliographic Details
Published in:Cancer biology & therapy 2013-07, Vol.14 (7), p.597-605
Main Authors: Zhang, Xiang-Hua, Cheng, Ying, Shin, Jung-Young, Kim, Jeong-Oh, Oh, Ji-Eun, Kang, Jin-Hyoung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-1514e85e4f17f3bbc7f42eae382cc97036e6bc6a8e77cb42f4c27705c40bfe7a3
cites cdi_FETCH-LOGICAL-c486t-1514e85e4f17f3bbc7f42eae382cc97036e6bc6a8e77cb42f4c27705c40bfe7a3
container_end_page 605
container_issue 7
container_start_page 597
container_title Cancer biology & therapy
container_volume 14
creator Zhang, Xiang-Hua
Cheng, Ying
Shin, Jung-Young
Kim, Jeong-Oh
Oh, Ji-Eun
Kang, Jin-Hyoung
description The KRAS gain-of-function mutation confers intrinsic resistance to targeted anti-cancer drugs and cytotoxic chemotherapeutic agents, ultimately leading to treatment failure. KRAS mutation frequency in lung adenocarcinoma is ~15-30%. Novel therapeutic strategies should be developed to improve clinical outcomes in these cases. Deregulation of the p16/cyclin-dependent kinase (CDK) 4/retinoblastoma (Rb) pathway is frequently observed in various cancers and it represents an attractive therapeutic target. We compared the anti-tumor efficacy of genetically knocked-down CDK4 and a pharmacological inhibitor of CDK4/6, CINK4, in KRAS mutation-positive lung adenocarcinoma cells. We also investigated changes in anti-proliferative activity and downstream molecules with these treatments in combination with paclitaxel. CDK4 short interfering RNA (siRNA) significantly increased paclitaxel sensitivity in KRAS mutation-positive H23 cells. CINK4 demonstrated concentration- and time-dependent anti-proliferative activity in 5 adenocarcinoma lines. CINK4 induced G 1 arrest by downregulating the p16/cyclin D1/Rb pathway, resulting in apoptotic induction via increased expression of cleaved caspase3, cleaved PARP and Bax. Combined CINK4 and paclitaxel produced synergistic anti-proliferative activity and increased apoptosis through reduced cyclin D1 and Bcl-2 in KRAS mutation-positive cancer cells. These data suggest CDK4 is a promising target for development of anti-cancer drugs and CINK4 combined with paclitaxel may be an effective therapeutic strategy for enhancing anti-tumor efficacy in KRAS mutation-positive lung adenocarcinoma.
doi_str_mv 10.4161/cbt.24592
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3742489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23792647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-1514e85e4f17f3bbc7f42eae382cc97036e6bc6a8e77cb42f4c27705c40bfe7a3</originalsourceid><addsrcrecordid>eNplkU9P3DAQxS1EVSjtgS9Q-cohkDiOnVyQVtu_AqlSoWdrPGuzrhx7ZXuBnPvFG3Zb1IrTG-n95o00j5DTpj7njWguUJdzxruBHZDjpuu6qu-kOHya277iNZdH5E3OP-uaSSaG1-SItXJggstj8mtBlx-u-IWgLqyddiUmasIaAppMcSqxxEeHrkw0WroB9K7Ao_EzTf023FFYmRAREroQR6BovM90DUnH5GZ73BYIhV59X9xQyPRhtnfq_Koq08bsnLfklQWfzbs_ekJ-fPp4u_xSXX_7_HW5uK6Q96JUTddw03eG20baVmuUljMDpu0Z4iDrVhihUUBvpETNmeXIpKw75LW2RkJ7Qi73uZutHs0KTSgJvNokN0KaVASn_neCW6u7eK9ayRnvhzngbB-AKeacjH3ebWr11ISam1C7Jmb2_b_Hnsm_r58BvgdcsDGN8BCTX6kCk4_JprkAl1X7Mvc3QFWZTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS</title><source>Open Access: PubMed Central</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Zhang, Xiang-Hua ; Cheng, Ying ; Shin, Jung-Young ; Kim, Jeong-Oh ; Oh, Ji-Eun ; Kang, Jin-Hyoung</creator><creatorcontrib>Zhang, Xiang-Hua ; Cheng, Ying ; Shin, Jung-Young ; Kim, Jeong-Oh ; Oh, Ji-Eun ; Kang, Jin-Hyoung</creatorcontrib><description>The KRAS gain-of-function mutation confers intrinsic resistance to targeted anti-cancer drugs and cytotoxic chemotherapeutic agents, ultimately leading to treatment failure. KRAS mutation frequency in lung adenocarcinoma is ~15-30%. Novel therapeutic strategies should be developed to improve clinical outcomes in these cases. Deregulation of the p16/cyclin-dependent kinase (CDK) 4/retinoblastoma (Rb) pathway is frequently observed in various cancers and it represents an attractive therapeutic target. We compared the anti-tumor efficacy of genetically knocked-down CDK4 and a pharmacological inhibitor of CDK4/6, CINK4, in KRAS mutation-positive lung adenocarcinoma cells. We also investigated changes in anti-proliferative activity and downstream molecules with these treatments in combination with paclitaxel. CDK4 short interfering RNA (siRNA) significantly increased paclitaxel sensitivity in KRAS mutation-positive H23 cells. CINK4 demonstrated concentration- and time-dependent anti-proliferative activity in 5 adenocarcinoma lines. CINK4 induced G 1 arrest by downregulating the p16/cyclin D1/Rb pathway, resulting in apoptotic induction via increased expression of cleaved caspase3, cleaved PARP and Bax. Combined CINK4 and paclitaxel produced synergistic anti-proliferative activity and increased apoptosis through reduced cyclin D1 and Bcl-2 in KRAS mutation-positive cancer cells. These data suggest CDK4 is a promising target for development of anti-cancer drugs and CINK4 combined with paclitaxel may be an effective therapeutic strategy for enhancing anti-tumor efficacy in KRAS mutation-positive lung adenocarcinoma.</description><identifier>ISSN: 1538-4047</identifier><identifier>EISSN: 1555-8576</identifier><identifier>DOI: 10.4161/cbt.24592</identifier><identifier>PMID: 23792647</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Adenocarcinoma - drug therapy ; Adenocarcinoma - enzymology ; Adenocarcinoma - genetics ; Adenocarcinoma - metabolism ; Adenocarcinoma of Lung ; Antineoplastic Combined Chemotherapy Protocols - pharmacology ; CDK4 siRNA ; CDK4/6 inhibitor ; Cell Line, Tumor ; combination ; Cyclin-Dependent Kinase 4 - antagonists &amp; inhibitors ; Cyclin-Dependent Kinase 4 - genetics ; Cyclin-Dependent Kinase 4 - metabolism ; Cyclin-Dependent Kinase 6 - antagonists &amp; inhibitors ; Cyclin-Dependent Kinase 6 - genetics ; Cyclin-Dependent Kinase 6 - metabolism ; Drug Synergism ; Gene Knockdown Techniques ; Genes, ras ; Humans ; KRAS ; Lung Neoplasms - drug therapy ; Lung Neoplasms - enzymology ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Mutation ; NSCLC ; paclitaxel ; Paclitaxel - administration &amp; dosage ; Paclitaxel - pharmacology ; Protein Kinase Inhibitors - administration &amp; dosage ; Protein Kinase Inhibitors - pharmacology ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins p21(ras) ; ras Proteins - genetics ; Research Paper ; RNA, Small Interfering - administration &amp; dosage ; RNA, Small Interfering - genetics ; synergistic ; Transfection ; Tumor Cells, Cultured</subject><ispartof>Cancer biology &amp; therapy, 2013-07, Vol.14 (7), p.597-605</ispartof><rights>Copyright © 2013 Landes Bioscience 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-1514e85e4f17f3bbc7f42eae382cc97036e6bc6a8e77cb42f4c27705c40bfe7a3</citedby><cites>FETCH-LOGICAL-c486t-1514e85e4f17f3bbc7f42eae382cc97036e6bc6a8e77cb42f4c27705c40bfe7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742489/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742489/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23792647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiang-Hua</creatorcontrib><creatorcontrib>Cheng, Ying</creatorcontrib><creatorcontrib>Shin, Jung-Young</creatorcontrib><creatorcontrib>Kim, Jeong-Oh</creatorcontrib><creatorcontrib>Oh, Ji-Eun</creatorcontrib><creatorcontrib>Kang, Jin-Hyoung</creatorcontrib><title>A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS</title><title>Cancer biology &amp; therapy</title><addtitle>Cancer Biol Ther</addtitle><description>The KRAS gain-of-function mutation confers intrinsic resistance to targeted anti-cancer drugs and cytotoxic chemotherapeutic agents, ultimately leading to treatment failure. KRAS mutation frequency in lung adenocarcinoma is ~15-30%. Novel therapeutic strategies should be developed to improve clinical outcomes in these cases. Deregulation of the p16/cyclin-dependent kinase (CDK) 4/retinoblastoma (Rb) pathway is frequently observed in various cancers and it represents an attractive therapeutic target. We compared the anti-tumor efficacy of genetically knocked-down CDK4 and a pharmacological inhibitor of CDK4/6, CINK4, in KRAS mutation-positive lung adenocarcinoma cells. We also investigated changes in anti-proliferative activity and downstream molecules with these treatments in combination with paclitaxel. CDK4 short interfering RNA (siRNA) significantly increased paclitaxel sensitivity in KRAS mutation-positive H23 cells. CINK4 demonstrated concentration- and time-dependent anti-proliferative activity in 5 adenocarcinoma lines. CINK4 induced G 1 arrest by downregulating the p16/cyclin D1/Rb pathway, resulting in apoptotic induction via increased expression of cleaved caspase3, cleaved PARP and Bax. Combined CINK4 and paclitaxel produced synergistic anti-proliferative activity and increased apoptosis through reduced cyclin D1 and Bcl-2 in KRAS mutation-positive cancer cells. These data suggest CDK4 is a promising target for development of anti-cancer drugs and CINK4 combined with paclitaxel may be an effective therapeutic strategy for enhancing anti-tumor efficacy in KRAS mutation-positive lung adenocarcinoma.</description><subject>Adenocarcinoma - drug therapy</subject><subject>Adenocarcinoma - enzymology</subject><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - metabolism</subject><subject>Adenocarcinoma of Lung</subject><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacology</subject><subject>CDK4 siRNA</subject><subject>CDK4/6 inhibitor</subject><subject>Cell Line, Tumor</subject><subject>combination</subject><subject>Cyclin-Dependent Kinase 4 - antagonists &amp; inhibitors</subject><subject>Cyclin-Dependent Kinase 4 - genetics</subject><subject>Cyclin-Dependent Kinase 4 - metabolism</subject><subject>Cyclin-Dependent Kinase 6 - antagonists &amp; inhibitors</subject><subject>Cyclin-Dependent Kinase 6 - genetics</subject><subject>Cyclin-Dependent Kinase 6 - metabolism</subject><subject>Drug Synergism</subject><subject>Gene Knockdown Techniques</subject><subject>Genes, ras</subject><subject>Humans</subject><subject>KRAS</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - enzymology</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Mutation</subject><subject>NSCLC</subject><subject>paclitaxel</subject><subject>Paclitaxel - administration &amp; dosage</subject><subject>Paclitaxel - pharmacology</subject><subject>Protein Kinase Inhibitors - administration &amp; dosage</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins p21(ras)</subject><subject>ras Proteins - genetics</subject><subject>Research Paper</subject><subject>RNA, Small Interfering - administration &amp; dosage</subject><subject>RNA, Small Interfering - genetics</subject><subject>synergistic</subject><subject>Transfection</subject><subject>Tumor Cells, Cultured</subject><issn>1538-4047</issn><issn>1555-8576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNplkU9P3DAQxS1EVSjtgS9Q-cohkDiOnVyQVtu_AqlSoWdrPGuzrhx7ZXuBnPvFG3Zb1IrTG-n95o00j5DTpj7njWguUJdzxruBHZDjpuu6qu-kOHya277iNZdH5E3OP-uaSSaG1-SItXJggstj8mtBlx-u-IWgLqyddiUmasIaAppMcSqxxEeHrkw0WroB9K7Ao_EzTf023FFYmRAREroQR6BovM90DUnH5GZ73BYIhV59X9xQyPRhtnfq_Koq08bsnLfklQWfzbs_ekJ-fPp4u_xSXX_7_HW5uK6Q96JUTddw03eG20baVmuUljMDpu0Z4iDrVhihUUBvpETNmeXIpKw75LW2RkJ7Qi73uZutHs0KTSgJvNokN0KaVASn_neCW6u7eK9ayRnvhzngbB-AKeacjH3ebWr11ISam1C7Jmb2_b_Hnsm_r58BvgdcsDGN8BCTX6kCk4_JprkAl1X7Mvc3QFWZTQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Zhang, Xiang-Hua</creator><creator>Cheng, Ying</creator><creator>Shin, Jung-Young</creator><creator>Kim, Jeong-Oh</creator><creator>Oh, Ji-Eun</creator><creator>Kang, Jin-Hyoung</creator><general>Taylor &amp; Francis</general><general>Landes Bioscience</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS</title><author>Zhang, Xiang-Hua ; Cheng, Ying ; Shin, Jung-Young ; Kim, Jeong-Oh ; Oh, Ji-Eun ; Kang, Jin-Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-1514e85e4f17f3bbc7f42eae382cc97036e6bc6a8e77cb42f4c27705c40bfe7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenocarcinoma - drug therapy</topic><topic>Adenocarcinoma - enzymology</topic><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - metabolism</topic><topic>Adenocarcinoma of Lung</topic><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacology</topic><topic>CDK4 siRNA</topic><topic>CDK4/6 inhibitor</topic><topic>Cell Line, Tumor</topic><topic>combination</topic><topic>Cyclin-Dependent Kinase 4 - antagonists &amp; inhibitors</topic><topic>Cyclin-Dependent Kinase 4 - genetics</topic><topic>Cyclin-Dependent Kinase 4 - metabolism</topic><topic>Cyclin-Dependent Kinase 6 - antagonists &amp; inhibitors</topic><topic>Cyclin-Dependent Kinase 6 - genetics</topic><topic>Cyclin-Dependent Kinase 6 - metabolism</topic><topic>Drug Synergism</topic><topic>Gene Knockdown Techniques</topic><topic>Genes, ras</topic><topic>Humans</topic><topic>KRAS</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - enzymology</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Mutation</topic><topic>NSCLC</topic><topic>paclitaxel</topic><topic>Paclitaxel - administration &amp; dosage</topic><topic>Paclitaxel - pharmacology</topic><topic>Protein Kinase Inhibitors - administration &amp; dosage</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins p21(ras)</topic><topic>ras Proteins - genetics</topic><topic>Research Paper</topic><topic>RNA, Small Interfering - administration &amp; dosage</topic><topic>RNA, Small Interfering - genetics</topic><topic>synergistic</topic><topic>Transfection</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiang-Hua</creatorcontrib><creatorcontrib>Cheng, Ying</creatorcontrib><creatorcontrib>Shin, Jung-Young</creatorcontrib><creatorcontrib>Kim, Jeong-Oh</creatorcontrib><creatorcontrib>Oh, Ji-Eun</creatorcontrib><creatorcontrib>Kang, Jin-Hyoung</creatorcontrib><collection>Taylor &amp; Francis (Open access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer biology &amp; therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiang-Hua</au><au>Cheng, Ying</au><au>Shin, Jung-Young</au><au>Kim, Jeong-Oh</au><au>Oh, Ji-Eun</au><au>Kang, Jin-Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS</atitle><jtitle>Cancer biology &amp; therapy</jtitle><addtitle>Cancer Biol Ther</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>14</volume><issue>7</issue><spage>597</spage><epage>605</epage><pages>597-605</pages><issn>1538-4047</issn><eissn>1555-8576</eissn><abstract>The KRAS gain-of-function mutation confers intrinsic resistance to targeted anti-cancer drugs and cytotoxic chemotherapeutic agents, ultimately leading to treatment failure. KRAS mutation frequency in lung adenocarcinoma is ~15-30%. Novel therapeutic strategies should be developed to improve clinical outcomes in these cases. Deregulation of the p16/cyclin-dependent kinase (CDK) 4/retinoblastoma (Rb) pathway is frequently observed in various cancers and it represents an attractive therapeutic target. We compared the anti-tumor efficacy of genetically knocked-down CDK4 and a pharmacological inhibitor of CDK4/6, CINK4, in KRAS mutation-positive lung adenocarcinoma cells. We also investigated changes in anti-proliferative activity and downstream molecules with these treatments in combination with paclitaxel. CDK4 short interfering RNA (siRNA) significantly increased paclitaxel sensitivity in KRAS mutation-positive H23 cells. CINK4 demonstrated concentration- and time-dependent anti-proliferative activity in 5 adenocarcinoma lines. CINK4 induced G 1 arrest by downregulating the p16/cyclin D1/Rb pathway, resulting in apoptotic induction via increased expression of cleaved caspase3, cleaved PARP and Bax. Combined CINK4 and paclitaxel produced synergistic anti-proliferative activity and increased apoptosis through reduced cyclin D1 and Bcl-2 in KRAS mutation-positive cancer cells. These data suggest CDK4 is a promising target for development of anti-cancer drugs and CINK4 combined with paclitaxel may be an effective therapeutic strategy for enhancing anti-tumor efficacy in KRAS mutation-positive lung adenocarcinoma.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>23792647</pmid><doi>10.4161/cbt.24592</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-4047
ispartof Cancer biology & therapy, 2013-07, Vol.14 (7), p.597-605
issn 1538-4047
1555-8576
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3742489
source Open Access: PubMed Central; Free E-Journal (出版社公開部分のみ)
subjects Adenocarcinoma - drug therapy
Adenocarcinoma - enzymology
Adenocarcinoma - genetics
Adenocarcinoma - metabolism
Adenocarcinoma of Lung
Antineoplastic Combined Chemotherapy Protocols - pharmacology
CDK4 siRNA
CDK4/6 inhibitor
Cell Line, Tumor
combination
Cyclin-Dependent Kinase 4 - antagonists & inhibitors
Cyclin-Dependent Kinase 4 - genetics
Cyclin-Dependent Kinase 4 - metabolism
Cyclin-Dependent Kinase 6 - antagonists & inhibitors
Cyclin-Dependent Kinase 6 - genetics
Cyclin-Dependent Kinase 6 - metabolism
Drug Synergism
Gene Knockdown Techniques
Genes, ras
Humans
KRAS
Lung Neoplasms - drug therapy
Lung Neoplasms - enzymology
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
Mutation
NSCLC
paclitaxel
Paclitaxel - administration & dosage
Paclitaxel - pharmacology
Protein Kinase Inhibitors - administration & dosage
Protein Kinase Inhibitors - pharmacology
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins p21(ras)
ras Proteins - genetics
Research Paper
RNA, Small Interfering - administration & dosage
RNA, Small Interfering - genetics
synergistic
Transfection
Tumor Cells, Cultured
title A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CDK4/6%20inhibitor%20enhances%20cytotoxicity%20of%20paclitaxel%20in%20lung%20adenocarcinoma%20cells%20harboring%20mutant%20KRAS%20as%20well%20as%20wild-type%20KRAS&rft.jtitle=Cancer%20biology%20&%20therapy&rft.au=Zhang,%20Xiang-Hua&rft.date=2013-07-01&rft.volume=14&rft.issue=7&rft.spage=597&rft.epage=605&rft.pages=597-605&rft.issn=1538-4047&rft.eissn=1555-8576&rft_id=info:doi/10.4161/cbt.24592&rft_dat=%3Cpubmed_cross%3E23792647%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-1514e85e4f17f3bbc7f42eae382cc97036e6bc6a8e77cb42f4c27705c40bfe7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/23792647&rfr_iscdi=true