Loading…

The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts

TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colon...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2013-08, Vol.288 (32), p.22942-22960
Main Authors: Jensen, Dane D., Godfrey, Cody B., Niklas, Christian, Canals, Meritxell, Kocan, Martina, Poole, Daniel P., Murphy, Jane E., Alemi, Farzad, Cottrell, Graeme S., Korbmacher, Christoph, Lambert, Nevin A., Bunnett, Nigel W., Corvera, Carlos U.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-394b56a60ff780b01cbe33a5f99628e8c1e4bf18ee1f0778ff26af53c9cc03153
cites cdi_FETCH-LOGICAL-c443t-394b56a60ff780b01cbe33a5f99628e8c1e4bf18ee1f0778ff26af53c9cc03153
container_end_page 22960
container_issue 32
container_start_page 22942
container_title The Journal of biological chemistry
container_volume 288
creator Jensen, Dane D.
Godfrey, Cody B.
Niklas, Christian
Canals, Meritxell
Kocan, Martina
Poole, Daniel P.
Murphy, Jane E.
Alemi, Farzad
Cottrell, Graeme S.
Korbmacher, Christoph
Lambert, Nevin A.
Bunnett, Nigel W.
Corvera, Carlos U.
description TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists. Background: The TGR5 bile acid receptor controls energy balance, inflammation, and digestion, but TGR5 signaling is poorly understood. Results: TGR5 does not interact with β-arrestins, internalize, or desensitize, but signals from plasma membrane rafts. Conclusion: TGR5 transmits sustained signals close to the cell surface. Significance: Understanding TGR5 signaling will facilitate design of TGR5 agonists for metabolic, inflammatory, and digestive disorders.
doi_str_mv 10.1074/jbc.M113.455774
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3743472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820453232</els_id><sourcerecordid>23818521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-394b56a60ff780b01cbe33a5f99628e8c1e4bf18ee1f0778ff26af53c9cc03153</originalsourceid><addsrcrecordid>eNp1kcFuEzEQhi0EomnhzA3NC2xqr-3s7gUplFIqtRSlQeJmeb3jxlXWjmyniNfoo_AgPBOO0lZw6Fx8mO__R9ZHyDtGp4w24vi2N9NLxvhUSNk04gWZMNryikv24yWZUFqzqqtle0AOU7qlZUTHXpODmreslTWbkPvlCuGjWyPMjRtggQY3OURYni0kfAqY4GvIcO4zRm0y_HR5BX9-V_MYMWXnE-zYqK11BnKAUz-EFMYS67d5t_BpdDnB9TZl7TwOcO1uvF4nsDGM8G2t06jhEse-oAgLbXN6Q17ZQuDbh_eIfP98ujz5Ul1cnZ2fzC8qIwTPFe9EL2d6Rq1tWtpTZnrkXEvbdbO6xdYwFL1lLSKztGlaa-uZtpKbzhjKmeRH5MO-d7PtRxwM-hz1Wm2iG3X8pYJ26v-Ndyt1E-4UbwQXTV0KjvcFJoaUItqnLKNqp0cVPWqnR-31lMT7f08-8Y8-CtDtASwfv3MYVTIOvcHBRTRZDcE9W_4X3xGijg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Jensen, Dane D. ; Godfrey, Cody B. ; Niklas, Christian ; Canals, Meritxell ; Kocan, Martina ; Poole, Daniel P. ; Murphy, Jane E. ; Alemi, Farzad ; Cottrell, Graeme S. ; Korbmacher, Christoph ; Lambert, Nevin A. ; Bunnett, Nigel W. ; Corvera, Carlos U.</creator><creatorcontrib>Jensen, Dane D. ; Godfrey, Cody B. ; Niklas, Christian ; Canals, Meritxell ; Kocan, Martina ; Poole, Daniel P. ; Murphy, Jane E. ; Alemi, Farzad ; Cottrell, Graeme S. ; Korbmacher, Christoph ; Lambert, Nevin A. ; Bunnett, Nigel W. ; Corvera, Carlos U.</creatorcontrib><description>TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists. Background: The TGR5 bile acid receptor controls energy balance, inflammation, and digestion, but TGR5 signaling is poorly understood. Results: TGR5 does not interact with β-arrestins, internalize, or desensitize, but signals from plasma membrane rafts. Conclusion: TGR5 transmits sustained signals close to the cell surface. Significance: Understanding TGR5 signaling will facilitate design of TGR5 agonists for metabolic, inflammatory, and digestive disorders.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.455774</identifier><identifier>PMID: 23818521</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antineoplastic Agents - pharmacology ; Arrestin ; Arrestins - antagonists &amp; inhibitors ; Arrestins - genetics ; Arrestins - metabolism ; beta-Arrestin 1 ; beta-Arrestin 2 ; beta-Arrestins ; beta-Cyclodextrins - pharmacology ; Bile Acid ; Cholagogues and Choleretics - pharmacology ; Cyclic AMP - genetics ; Cyclic AMP - metabolism ; Deoxycholic Acid - pharmacology ; Endocytosis ; Endocytosis - drug effects ; Endocytosis - physiology ; Endosomes - genetics ; Endosomes - metabolism ; Enzyme Inhibitors - pharmacology ; ErbB Receptors - antagonists &amp; inhibitors ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; G Protein-coupled Receptors (GPCR) ; G-Protein-Coupled Receptor Kinase 2 - genetics ; G-Protein-Coupled Receptor Kinase 2 - metabolism ; G-Protein-Coupled Receptor Kinase 5 - genetics ; G-Protein-Coupled Receptor Kinase 5 - metabolism ; HEK293 Cells ; Humans ; Lipid Raft ; Membrane Microdomains - genetics ; Membrane Microdomains - metabolism ; Mitogen-Activated Protein Kinase 1 - genetics ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - genetics ; Mitogen-Activated Protein Kinase 3 - metabolism ; Oleanolic Acid - pharmacology ; Phenylalanine - analogs &amp; derivatives ; Phenylalanine - pharmacology ; Protein Transport - drug effects ; Protein Transport - physiology ; Quinazolines - pharmacology ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Signal Transduction ; Thiophenes - pharmacology ; Tyrphostins - pharmacology</subject><ispartof>The Journal of biological chemistry, 2013-08, Vol.288 (32), p.22942-22960</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-394b56a60ff780b01cbe33a5f99628e8c1e4bf18ee1f0778ff26af53c9cc03153</citedby><cites>FETCH-LOGICAL-c443t-394b56a60ff780b01cbe33a5f99628e8c1e4bf18ee1f0778ff26af53c9cc03153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743472/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820453232$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23818521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Dane D.</creatorcontrib><creatorcontrib>Godfrey, Cody B.</creatorcontrib><creatorcontrib>Niklas, Christian</creatorcontrib><creatorcontrib>Canals, Meritxell</creatorcontrib><creatorcontrib>Kocan, Martina</creatorcontrib><creatorcontrib>Poole, Daniel P.</creatorcontrib><creatorcontrib>Murphy, Jane E.</creatorcontrib><creatorcontrib>Alemi, Farzad</creatorcontrib><creatorcontrib>Cottrell, Graeme S.</creatorcontrib><creatorcontrib>Korbmacher, Christoph</creatorcontrib><creatorcontrib>Lambert, Nevin A.</creatorcontrib><creatorcontrib>Bunnett, Nigel W.</creatorcontrib><creatorcontrib>Corvera, Carlos U.</creatorcontrib><title>The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists. Background: The TGR5 bile acid receptor controls energy balance, inflammation, and digestion, but TGR5 signaling is poorly understood. Results: TGR5 does not interact with β-arrestins, internalize, or desensitize, but signals from plasma membrane rafts. Conclusion: TGR5 transmits sustained signals close to the cell surface. Significance: Understanding TGR5 signaling will facilitate design of TGR5 agonists for metabolic, inflammatory, and digestive disorders.</description><subject>Antineoplastic Agents - pharmacology</subject><subject>Arrestin</subject><subject>Arrestins - antagonists &amp; inhibitors</subject><subject>Arrestins - genetics</subject><subject>Arrestins - metabolism</subject><subject>beta-Arrestin 1</subject><subject>beta-Arrestin 2</subject><subject>beta-Arrestins</subject><subject>beta-Cyclodextrins - pharmacology</subject><subject>Bile Acid</subject><subject>Cholagogues and Choleretics - pharmacology</subject><subject>Cyclic AMP - genetics</subject><subject>Cyclic AMP - metabolism</subject><subject>Deoxycholic Acid - pharmacology</subject><subject>Endocytosis</subject><subject>Endocytosis - drug effects</subject><subject>Endocytosis - physiology</subject><subject>Endosomes - genetics</subject><subject>Endosomes - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>ErbB Receptors - antagonists &amp; inhibitors</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>G Protein-coupled Receptors (GPCR)</subject><subject>G-Protein-Coupled Receptor Kinase 2 - genetics</subject><subject>G-Protein-Coupled Receptor Kinase 2 - metabolism</subject><subject>G-Protein-Coupled Receptor Kinase 5 - genetics</subject><subject>G-Protein-Coupled Receptor Kinase 5 - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Lipid Raft</subject><subject>Membrane Microdomains - genetics</subject><subject>Membrane Microdomains - metabolism</subject><subject>Mitogen-Activated Protein Kinase 1 - genetics</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - genetics</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Oleanolic Acid - pharmacology</subject><subject>Phenylalanine - analogs &amp; derivatives</subject><subject>Phenylalanine - pharmacology</subject><subject>Protein Transport - drug effects</subject><subject>Protein Transport - physiology</subject><subject>Quinazolines - pharmacology</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Signal Transduction</subject><subject>Thiophenes - pharmacology</subject><subject>Tyrphostins - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kcFuEzEQhi0EomnhzA3NC2xqr-3s7gUplFIqtRSlQeJmeb3jxlXWjmyniNfoo_AgPBOO0lZw6Fx8mO__R9ZHyDtGp4w24vi2N9NLxvhUSNk04gWZMNryikv24yWZUFqzqqtle0AOU7qlZUTHXpODmreslTWbkPvlCuGjWyPMjRtggQY3OURYni0kfAqY4GvIcO4zRm0y_HR5BX9-V_MYMWXnE-zYqK11BnKAUz-EFMYS67d5t_BpdDnB9TZl7TwOcO1uvF4nsDGM8G2t06jhEse-oAgLbXN6Q17ZQuDbh_eIfP98ujz5Ul1cnZ2fzC8qIwTPFe9EL2d6Rq1tWtpTZnrkXEvbdbO6xdYwFL1lLSKztGlaa-uZtpKbzhjKmeRH5MO-d7PtRxwM-hz1Wm2iG3X8pYJ26v-Ndyt1E-4UbwQXTV0KjvcFJoaUItqnLKNqp0cVPWqnR-31lMT7f08-8Y8-CtDtASwfv3MYVTIOvcHBRTRZDcE9W_4X3xGijg</recordid><startdate>20130809</startdate><enddate>20130809</enddate><creator>Jensen, Dane D.</creator><creator>Godfrey, Cody B.</creator><creator>Niklas, Christian</creator><creator>Canals, Meritxell</creator><creator>Kocan, Martina</creator><creator>Poole, Daniel P.</creator><creator>Murphy, Jane E.</creator><creator>Alemi, Farzad</creator><creator>Cottrell, Graeme S.</creator><creator>Korbmacher, Christoph</creator><creator>Lambert, Nevin A.</creator><creator>Bunnett, Nigel W.</creator><creator>Corvera, Carlos U.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130809</creationdate><title>The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts</title><author>Jensen, Dane D. ; Godfrey, Cody B. ; Niklas, Christian ; Canals, Meritxell ; Kocan, Martina ; Poole, Daniel P. ; Murphy, Jane E. ; Alemi, Farzad ; Cottrell, Graeme S. ; Korbmacher, Christoph ; Lambert, Nevin A. ; Bunnett, Nigel W. ; Corvera, Carlos U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-394b56a60ff780b01cbe33a5f99628e8c1e4bf18ee1f0778ff26af53c9cc03153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antineoplastic Agents - pharmacology</topic><topic>Arrestin</topic><topic>Arrestins - antagonists &amp; inhibitors</topic><topic>Arrestins - genetics</topic><topic>Arrestins - metabolism</topic><topic>beta-Arrestin 1</topic><topic>beta-Arrestin 2</topic><topic>beta-Arrestins</topic><topic>beta-Cyclodextrins - pharmacology</topic><topic>Bile Acid</topic><topic>Cholagogues and Choleretics - pharmacology</topic><topic>Cyclic AMP - genetics</topic><topic>Cyclic AMP - metabolism</topic><topic>Deoxycholic Acid - pharmacology</topic><topic>Endocytosis</topic><topic>Endocytosis - drug effects</topic><topic>Endocytosis - physiology</topic><topic>Endosomes - genetics</topic><topic>Endosomes - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>ErbB Receptors - antagonists &amp; inhibitors</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>G Protein-coupled Receptors (GPCR)</topic><topic>G-Protein-Coupled Receptor Kinase 2 - genetics</topic><topic>G-Protein-Coupled Receptor Kinase 2 - metabolism</topic><topic>G-Protein-Coupled Receptor Kinase 5 - genetics</topic><topic>G-Protein-Coupled Receptor Kinase 5 - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Lipid Raft</topic><topic>Membrane Microdomains - genetics</topic><topic>Membrane Microdomains - metabolism</topic><topic>Mitogen-Activated Protein Kinase 1 - genetics</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - genetics</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Oleanolic Acid - pharmacology</topic><topic>Phenylalanine - analogs &amp; derivatives</topic><topic>Phenylalanine - pharmacology</topic><topic>Protein Transport - drug effects</topic><topic>Protein Transport - physiology</topic><topic>Quinazolines - pharmacology</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Signal Transduction</topic><topic>Thiophenes - pharmacology</topic><topic>Tyrphostins - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Dane D.</creatorcontrib><creatorcontrib>Godfrey, Cody B.</creatorcontrib><creatorcontrib>Niklas, Christian</creatorcontrib><creatorcontrib>Canals, Meritxell</creatorcontrib><creatorcontrib>Kocan, Martina</creatorcontrib><creatorcontrib>Poole, Daniel P.</creatorcontrib><creatorcontrib>Murphy, Jane E.</creatorcontrib><creatorcontrib>Alemi, Farzad</creatorcontrib><creatorcontrib>Cottrell, Graeme S.</creatorcontrib><creatorcontrib>Korbmacher, Christoph</creatorcontrib><creatorcontrib>Lambert, Nevin A.</creatorcontrib><creatorcontrib>Bunnett, Nigel W.</creatorcontrib><creatorcontrib>Corvera, Carlos U.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Dane D.</au><au>Godfrey, Cody B.</au><au>Niklas, Christian</au><au>Canals, Meritxell</au><au>Kocan, Martina</au><au>Poole, Daniel P.</au><au>Murphy, Jane E.</au><au>Alemi, Farzad</au><au>Cottrell, Graeme S.</au><au>Korbmacher, Christoph</au><au>Lambert, Nevin A.</au><au>Bunnett, Nigel W.</au><au>Corvera, Carlos U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-08-09</date><risdate>2013</risdate><volume>288</volume><issue>32</issue><spage>22942</spage><epage>22960</epage><pages>22942-22960</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists. Background: The TGR5 bile acid receptor controls energy balance, inflammation, and digestion, but TGR5 signaling is poorly understood. Results: TGR5 does not interact with β-arrestins, internalize, or desensitize, but signals from plasma membrane rafts. Conclusion: TGR5 transmits sustained signals close to the cell surface. Significance: Understanding TGR5 signaling will facilitate design of TGR5 agonists for metabolic, inflammatory, and digestive disorders.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23818521</pmid><doi>10.1074/jbc.M113.455774</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-08, Vol.288 (32), p.22942-22960
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3743472
source Elsevier ScienceDirect Journals; PubMed Central
subjects Antineoplastic Agents - pharmacology
Arrestin
Arrestins - antagonists & inhibitors
Arrestins - genetics
Arrestins - metabolism
beta-Arrestin 1
beta-Arrestin 2
beta-Arrestins
beta-Cyclodextrins - pharmacology
Bile Acid
Cholagogues and Choleretics - pharmacology
Cyclic AMP - genetics
Cyclic AMP - metabolism
Deoxycholic Acid - pharmacology
Endocytosis
Endocytosis - drug effects
Endocytosis - physiology
Endosomes - genetics
Endosomes - metabolism
Enzyme Inhibitors - pharmacology
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - genetics
ErbB Receptors - metabolism
G Protein-coupled Receptors (GPCR)
G-Protein-Coupled Receptor Kinase 2 - genetics
G-Protein-Coupled Receptor Kinase 2 - metabolism
G-Protein-Coupled Receptor Kinase 5 - genetics
G-Protein-Coupled Receptor Kinase 5 - metabolism
HEK293 Cells
Humans
Lipid Raft
Membrane Microdomains - genetics
Membrane Microdomains - metabolism
Mitogen-Activated Protein Kinase 1 - genetics
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - genetics
Mitogen-Activated Protein Kinase 3 - metabolism
Oleanolic Acid - pharmacology
Phenylalanine - analogs & derivatives
Phenylalanine - pharmacology
Protein Transport - drug effects
Protein Transport - physiology
Quinazolines - pharmacology
Receptors, G-Protein-Coupled - genetics
Receptors, G-Protein-Coupled - metabolism
Signal Transduction
Thiophenes - pharmacology
Tyrphostins - pharmacology
title The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Bile%20Acid%20Receptor%20TGR5%20Does%20Not%20Interact%20with%20%CE%B2-Arrestins%20or%20Traffic%20to%20Endosomes%20but%20Transmits%20Sustained%20Signals%20from%20Plasma%20Membrane%20Rafts&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Jensen,%20Dane%20D.&rft.date=2013-08-09&rft.volume=288&rft.issue=32&rft.spage=22942&rft.epage=22960&rft.pages=22942-22960&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.455774&rft_dat=%3Cpubmed_cross%3E23818521%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-394b56a60ff780b01cbe33a5f99628e8c1e4bf18ee1f0778ff26af53c9cc03153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/23818521&rfr_iscdi=true