Loading…
Free radical scavenging activity of silibinin in nitrite-induced hemoglobin oxidation and membrane fragility models
Free radical formation in heme proteins is recognized as a factor in mediating the toxicity of many drugs. Xenobiotics and drug therapy-related toxicity, due to oxidative modification of hemoglobin (Hb), has been attributed in part to the uncontrolled oxidative reactions. A variety of antioxidant st...
Saved in:
Published in: | Saudi pharmaceutical journal 2011-07, Vol.19 (3), p.177-183 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Free radical formation in heme proteins is recognized as a factor in mediating the toxicity of many drugs. Xenobiotics and drug therapy-related toxicity, due to oxidative modification of hemoglobin (Hb), has been attributed in part to the uncontrolled oxidative reactions. A variety of antioxidant strategies to ameliorate potential oxidative damage
in vivo have been suggested. The present study was designed to evaluate the dose–response relationship of the free radical scavenging properties of silibinin dihemisuccinate (SDH) in nitrite-induced Hb oxidation
in vitro and
in vivo. Different concentrations of SDH were added, before and after different intervals of inducing Hb oxidation in erythrocytes lysate, and formation of methemoglobin (MetHb) was monitored spectrophotometrically; the same approach was utilized to evaluate the effect of the same doses of SDH on the integrity of erythrocytes after induction of hemolysis. Moreover, the most effective dose of SDH was administered in rats before challenge with toxic dose of sodium nitrite, and MetHb formation was monitored as mentioned before. The results showed that in both
in vitro and
in vivo models, SDH successfully attenuates Hb oxidation after challenge with sodium nitrite; this protective effect was not related to the stage of the catalytic stage of Hb oxidation, though the effect was more prominent when the compound was administered before nitrite. In conclusion, SDH can effectively, in concentration-dependent pattern, attenuate sodium nitrite-induced Hb oxidation and maintain integrity of red blood cells both
in vitro and
in vivo. |
---|---|
ISSN: | 1319-0164 2213-7475 |
DOI: | 10.1016/j.jsps.2011.03.006 |