Loading…

Marginal log-linear parameters for graphical Markov models

Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parameterizations under linear constraints induce a wide variety of models, including models that are defined by conditional independences. We introduce a subclass of MLL models which correspond to acycli...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2013-09, Vol.75 (4), p.743-768
Main Authors: Evans, Robin J., Richardson, Thomas S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3
cites cdi_FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3
container_end_page 768
container_issue 4
container_start_page 743
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 75
creator Evans, Robin J.
Richardson, Thomas S.
description Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parameterizations under linear constraints induce a wide variety of models, including models that are defined by conditional independences. We introduce a subclass of MLL models which correspond to acyclic directed mixed graphs under the usual global Markov property. We characterize for precisely which graphs the resulting parameterization is variation independent. The MLL approach provides the first description of acyclic directed mixed graph models in terms of a minimal list of constraints. The parameterization is also easily adapted to sparse modelling techniques, which we illustrate by using several examples of real data.
doi_str_mv 10.1111/rssb.12020
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3754910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24772454</jstor_id><sourcerecordid>24772454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3</originalsourceid><addsrcrecordid>eNqNks1PFDEUwBuiEVy9eMdM4sWYDLbTrykHEiGCHwhRMHJrOp126dKZru0syn9v14EVPQjv8pq8X3_J-wDgGYJbKMfrmFKzhSpYwTWwgQjjpahZ_SC_MRMlJ6haB49TmsEcjONHYL3CQnBG8AbY_qTi1PXKFz5MS-96o2IxV1F1ZjAxFTbEYhrV_NzpzGT4IlwWXWiNT0_AQ6t8Mk-v8wR83X97uveuPDw-eL_35rDUjEBY0poSy63GvNXGstogLHSFmNWkblreWkZqpTRmlmNCUNMoKhqrlOLYVqRp8QTsjN75oulMlvRDVF7Oo-tUvJJBOfl3pXfnchouJeaUCASz4OW1IIbvC5MG2bmkjfeqN2GRJKorRjmDiN6NMo4Ihqi-h5VgLhiHOU_Ai3_QWVjEPPQlhQQmFAqRqVcjpWNIKRq7ahFBuVy0XC5a_l50hp_fHsoKvdlsBtAI_HDeXP1HJb-cnOzeSDfHP7M0hPjHSTivCF32UY51lwbzc1XPRyHzXXEqvx0dyLPTo939s4-f5Qf8C2IAy_k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419345099</pqid></control><display><type>article</type><title>Marginal log-linear parameters for graphical Markov models</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Evans, Robin J. ; Richardson, Thomas S.</creator><creatorcontrib>Evans, Robin J. ; Richardson, Thomas S.</creatorcontrib><description>Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parameterizations under linear constraints induce a wide variety of models, including models that are defined by conditional independences. We introduce a subclass of MLL models which correspond to acyclic directed mixed graphs under the usual global Markov property. We characterize for precisely which graphs the resulting parameterization is variation independent. The MLL approach provides the first description of acyclic directed mixed graph models in terms of a minimal list of constraints. The parameterization is also easily adapted to sparse modelling techniques, which we illustrate by using several examples of real data.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12020</identifier><identifier>PMID: 23997643</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acyclic directed mixed graph ; Conditional probabilities ; Degrees of freedom ; Directed acyclic graphs ; Discrete graphical model ; Econometric models ; Graphs ; Induced substructures ; Linear models ; Lists ; Marginal log-linear parameter ; Marginality ; Markov models ; Markovian processes ; Mathematical models ; Methodology ; Modelling ; Multivariate analysis ; Parameterization ; Parametric models ; Parametrization ; Parsimonious modelling ; Parsimony ; Random variables ; Statistical analysis ; Statistics ; Studies ; Variation independence ; Vertices</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2013-09, Vol.75 (4), p.743-768</ispartof><rights>Copyright © 2013 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2013 Royal Statistical Society</rights><rights>Copyright © 2013 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3</citedby><cites>FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24772454$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24772454$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,33222,33223,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23997643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evans, Robin J.</creatorcontrib><creatorcontrib>Richardson, Thomas S.</creatorcontrib><title>Marginal log-linear parameters for graphical Markov models</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><addtitle>J. R. Stat. Soc. B</addtitle><description>Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parameterizations under linear constraints induce a wide variety of models, including models that are defined by conditional independences. We introduce a subclass of MLL models which correspond to acyclic directed mixed graphs under the usual global Markov property. We characterize for precisely which graphs the resulting parameterization is variation independent. The MLL approach provides the first description of acyclic directed mixed graph models in terms of a minimal list of constraints. The parameterization is also easily adapted to sparse modelling techniques, which we illustrate by using several examples of real data.</description><subject>Acyclic directed mixed graph</subject><subject>Conditional probabilities</subject><subject>Degrees of freedom</subject><subject>Directed acyclic graphs</subject><subject>Discrete graphical model</subject><subject>Econometric models</subject><subject>Graphs</subject><subject>Induced substructures</subject><subject>Linear models</subject><subject>Lists</subject><subject>Marginal log-linear parameter</subject><subject>Marginality</subject><subject>Markov models</subject><subject>Markovian processes</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>Parameterization</subject><subject>Parametric models</subject><subject>Parametrization</subject><subject>Parsimonious modelling</subject><subject>Parsimony</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Studies</subject><subject>Variation independence</subject><subject>Vertices</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNks1PFDEUwBuiEVy9eMdM4sWYDLbTrykHEiGCHwhRMHJrOp126dKZru0syn9v14EVPQjv8pq8X3_J-wDgGYJbKMfrmFKzhSpYwTWwgQjjpahZ_SC_MRMlJ6haB49TmsEcjONHYL3CQnBG8AbY_qTi1PXKFz5MS-96o2IxV1F1ZjAxFTbEYhrV_NzpzGT4IlwWXWiNT0_AQ6t8Mk-v8wR83X97uveuPDw-eL_35rDUjEBY0poSy63GvNXGstogLHSFmNWkblreWkZqpTRmlmNCUNMoKhqrlOLYVqRp8QTsjN75oulMlvRDVF7Oo-tUvJJBOfl3pXfnchouJeaUCASz4OW1IIbvC5MG2bmkjfeqN2GRJKorRjmDiN6NMo4Ihqi-h5VgLhiHOU_Ai3_QWVjEPPQlhQQmFAqRqVcjpWNIKRq7ahFBuVy0XC5a_l50hp_fHsoKvdlsBtAI_HDeXP1HJb-cnOzeSDfHP7M0hPjHSTivCF32UY51lwbzc1XPRyHzXXEqvx0dyLPTo939s4-f5Qf8C2IAy_k</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Evans, Robin J.</creator><creator>Richardson, Thomas S.</creator><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201309</creationdate><title>Marginal log-linear parameters for graphical Markov models</title><author>Evans, Robin J. ; Richardson, Thomas S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acyclic directed mixed graph</topic><topic>Conditional probabilities</topic><topic>Degrees of freedom</topic><topic>Directed acyclic graphs</topic><topic>Discrete graphical model</topic><topic>Econometric models</topic><topic>Graphs</topic><topic>Induced substructures</topic><topic>Linear models</topic><topic>Lists</topic><topic>Marginal log-linear parameter</topic><topic>Marginality</topic><topic>Markov models</topic><topic>Markovian processes</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>Parameterization</topic><topic>Parametric models</topic><topic>Parametrization</topic><topic>Parsimonious modelling</topic><topic>Parsimony</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Studies</topic><topic>Variation independence</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Robin J.</creatorcontrib><creatorcontrib>Richardson, Thomas S.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Robin J.</au><au>Richardson, Thomas S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginal log-linear parameters for graphical Markov models</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><addtitle>J. R. Stat. Soc. B</addtitle><date>2013-09</date><risdate>2013</risdate><volume>75</volume><issue>4</issue><spage>743</spage><epage>768</epage><pages>743-768</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parameterizations under linear constraints induce a wide variety of models, including models that are defined by conditional independences. We introduce a subclass of MLL models which correspond to acyclic directed mixed graphs under the usual global Markov property. We characterize for precisely which graphs the resulting parameterization is variation independent. The MLL approach provides the first description of acyclic directed mixed graph models in terms of a minimal list of constraints. The parameterization is also easily adapted to sparse modelling techniques, which we illustrate by using several examples of real data.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23997643</pmid><doi>10.1111/rssb.12020</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2013-09, Vol.75 (4), p.743-768
issn 1369-7412
1467-9868
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3754910
source International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Acyclic directed mixed graph
Conditional probabilities
Degrees of freedom
Directed acyclic graphs
Discrete graphical model
Econometric models
Graphs
Induced substructures
Linear models
Lists
Marginal log-linear parameter
Marginality
Markov models
Markovian processes
Mathematical models
Methodology
Modelling
Multivariate analysis
Parameterization
Parametric models
Parametrization
Parsimonious modelling
Parsimony
Random variables
Statistical analysis
Statistics
Studies
Variation independence
Vertices
title Marginal log-linear parameters for graphical Markov models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginal%20log-linear%20parameters%20for%20graphical%20Markov%20models&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Evans,%20Robin%20J.&rft.date=2013-09&rft.volume=75&rft.issue=4&rft.spage=743&rft.epage=768&rft.pages=743-768&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12020&rft_dat=%3Cjstor_pubme%3E24772454%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1419345099&rft_id=info:pmid/23997643&rft_jstor_id=24772454&rfr_iscdi=true