Loading…
Marginal log-linear parameters for graphical Markov models
Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parameterizations under linear constraints induce a wide variety of models, including models that are defined by conditional independences. We introduce a subclass of MLL models which correspond to acycli...
Saved in:
Published in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2013-09, Vol.75 (4), p.743-768 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3 |
container_end_page | 768 |
container_issue | 4 |
container_start_page | 743 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 75 |
creator | Evans, Robin J. Richardson, Thomas S. |
description | Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parameterizations under linear constraints induce a wide variety of models, including models that are defined by conditional independences. We introduce a subclass of MLL models which correspond to acyclic directed mixed graphs under the usual global Markov property. We characterize for precisely which graphs the resulting parameterization is variation independent. The MLL approach provides the first description of acyclic directed mixed graph models in terms of a minimal list of constraints. The parameterization is also easily adapted to sparse modelling techniques, which we illustrate by using several examples of real data. |
doi_str_mv | 10.1111/rssb.12020 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3754910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24772454</jstor_id><sourcerecordid>24772454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3</originalsourceid><addsrcrecordid>eNqNks1PFDEUwBuiEVy9eMdM4sWYDLbTrykHEiGCHwhRMHJrOp126dKZru0syn9v14EVPQjv8pq8X3_J-wDgGYJbKMfrmFKzhSpYwTWwgQjjpahZ_SC_MRMlJ6haB49TmsEcjONHYL3CQnBG8AbY_qTi1PXKFz5MS-96o2IxV1F1ZjAxFTbEYhrV_NzpzGT4IlwWXWiNT0_AQ6t8Mk-v8wR83X97uveuPDw-eL_35rDUjEBY0poSy63GvNXGstogLHSFmNWkblreWkZqpTRmlmNCUNMoKhqrlOLYVqRp8QTsjN75oulMlvRDVF7Oo-tUvJJBOfl3pXfnchouJeaUCASz4OW1IIbvC5MG2bmkjfeqN2GRJKorRjmDiN6NMo4Ihqi-h5VgLhiHOU_Ai3_QWVjEPPQlhQQmFAqRqVcjpWNIKRq7ahFBuVy0XC5a_l50hp_fHsoKvdlsBtAI_HDeXP1HJb-cnOzeSDfHP7M0hPjHSTivCF32UY51lwbzc1XPRyHzXXEqvx0dyLPTo939s4-f5Qf8C2IAy_k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419345099</pqid></control><display><type>article</type><title>Marginal log-linear parameters for graphical Markov models</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Evans, Robin J. ; Richardson, Thomas S.</creator><creatorcontrib>Evans, Robin J. ; Richardson, Thomas S.</creatorcontrib><description>Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parameterizations under linear constraints induce a wide variety of models, including models that are defined by conditional independences. We introduce a subclass of MLL models which correspond to acyclic directed mixed graphs under the usual global Markov property. We characterize for precisely which graphs the resulting parameterization is variation independent. The MLL approach provides the first description of acyclic directed mixed graph models in terms of a minimal list of constraints. The parameterization is also easily adapted to sparse modelling techniques, which we illustrate by using several examples of real data.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12020</identifier><identifier>PMID: 23997643</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acyclic directed mixed graph ; Conditional probabilities ; Degrees of freedom ; Directed acyclic graphs ; Discrete graphical model ; Econometric models ; Graphs ; Induced substructures ; Linear models ; Lists ; Marginal log-linear parameter ; Marginality ; Markov models ; Markovian processes ; Mathematical models ; Methodology ; Modelling ; Multivariate analysis ; Parameterization ; Parametric models ; Parametrization ; Parsimonious modelling ; Parsimony ; Random variables ; Statistical analysis ; Statistics ; Studies ; Variation independence ; Vertices</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2013-09, Vol.75 (4), p.743-768</ispartof><rights>Copyright © 2013 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2013 Royal Statistical Society</rights><rights>Copyright © 2013 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3</citedby><cites>FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24772454$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24772454$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,33222,33223,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23997643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evans, Robin J.</creatorcontrib><creatorcontrib>Richardson, Thomas S.</creatorcontrib><title>Marginal log-linear parameters for graphical Markov models</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><addtitle>J. R. Stat. Soc. B</addtitle><description>Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parameterizations under linear constraints induce a wide variety of models, including models that are defined by conditional independences. We introduce a subclass of MLL models which correspond to acyclic directed mixed graphs under the usual global Markov property. We characterize for precisely which graphs the resulting parameterization is variation independent. The MLL approach provides the first description of acyclic directed mixed graph models in terms of a minimal list of constraints. The parameterization is also easily adapted to sparse modelling techniques, which we illustrate by using several examples of real data.</description><subject>Acyclic directed mixed graph</subject><subject>Conditional probabilities</subject><subject>Degrees of freedom</subject><subject>Directed acyclic graphs</subject><subject>Discrete graphical model</subject><subject>Econometric models</subject><subject>Graphs</subject><subject>Induced substructures</subject><subject>Linear models</subject><subject>Lists</subject><subject>Marginal log-linear parameter</subject><subject>Marginality</subject><subject>Markov models</subject><subject>Markovian processes</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>Parameterization</subject><subject>Parametric models</subject><subject>Parametrization</subject><subject>Parsimonious modelling</subject><subject>Parsimony</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Studies</subject><subject>Variation independence</subject><subject>Vertices</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNks1PFDEUwBuiEVy9eMdM4sWYDLbTrykHEiGCHwhRMHJrOp126dKZru0syn9v14EVPQjv8pq8X3_J-wDgGYJbKMfrmFKzhSpYwTWwgQjjpahZ_SC_MRMlJ6haB49TmsEcjONHYL3CQnBG8AbY_qTi1PXKFz5MS-96o2IxV1F1ZjAxFTbEYhrV_NzpzGT4IlwWXWiNT0_AQ6t8Mk-v8wR83X97uveuPDw-eL_35rDUjEBY0poSy63GvNXGstogLHSFmNWkblreWkZqpTRmlmNCUNMoKhqrlOLYVqRp8QTsjN75oulMlvRDVF7Oo-tUvJJBOfl3pXfnchouJeaUCASz4OW1IIbvC5MG2bmkjfeqN2GRJKorRjmDiN6NMo4Ihqi-h5VgLhiHOU_Ai3_QWVjEPPQlhQQmFAqRqVcjpWNIKRq7ahFBuVy0XC5a_l50hp_fHsoKvdlsBtAI_HDeXP1HJb-cnOzeSDfHP7M0hPjHSTivCF32UY51lwbzc1XPRyHzXXEqvx0dyLPTo939s4-f5Qf8C2IAy_k</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Evans, Robin J.</creator><creator>Richardson, Thomas S.</creator><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201309</creationdate><title>Marginal log-linear parameters for graphical Markov models</title><author>Evans, Robin J. ; Richardson, Thomas S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acyclic directed mixed graph</topic><topic>Conditional probabilities</topic><topic>Degrees of freedom</topic><topic>Directed acyclic graphs</topic><topic>Discrete graphical model</topic><topic>Econometric models</topic><topic>Graphs</topic><topic>Induced substructures</topic><topic>Linear models</topic><topic>Lists</topic><topic>Marginal log-linear parameter</topic><topic>Marginality</topic><topic>Markov models</topic><topic>Markovian processes</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>Parameterization</topic><topic>Parametric models</topic><topic>Parametrization</topic><topic>Parsimonious modelling</topic><topic>Parsimony</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Studies</topic><topic>Variation independence</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Robin J.</creatorcontrib><creatorcontrib>Richardson, Thomas S.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Robin J.</au><au>Richardson, Thomas S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginal log-linear parameters for graphical Markov models</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><addtitle>J. R. Stat. Soc. B</addtitle><date>2013-09</date><risdate>2013</risdate><volume>75</volume><issue>4</issue><spage>743</spage><epage>768</epage><pages>743-768</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parameterizations under linear constraints induce a wide variety of models, including models that are defined by conditional independences. We introduce a subclass of MLL models which correspond to acyclic directed mixed graphs under the usual global Markov property. We characterize for precisely which graphs the resulting parameterization is variation independent. The MLL approach provides the first description of acyclic directed mixed graph models in terms of a minimal list of constraints. The parameterization is also easily adapted to sparse modelling techniques, which we illustrate by using several examples of real data.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23997643</pmid><doi>10.1111/rssb.12020</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2013-09, Vol.75 (4), p.743-768 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3754910 |
source | International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Acyclic directed mixed graph Conditional probabilities Degrees of freedom Directed acyclic graphs Discrete graphical model Econometric models Graphs Induced substructures Linear models Lists Marginal log-linear parameter Marginality Markov models Markovian processes Mathematical models Methodology Modelling Multivariate analysis Parameterization Parametric models Parametrization Parsimonious modelling Parsimony Random variables Statistical analysis Statistics Studies Variation independence Vertices |
title | Marginal log-linear parameters for graphical Markov models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginal%20log-linear%20parameters%20for%20graphical%20Markov%20models&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Evans,%20Robin%20J.&rft.date=2013-09&rft.volume=75&rft.issue=4&rft.spage=743&rft.epage=768&rft.pages=743-768&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12020&rft_dat=%3Cjstor_pubme%3E24772454%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6400-5854f7fc37dcef68e139c216fc48bd7df648aac36f73441bba59bfaaa73f24bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1419345099&rft_id=info:pmid/23997643&rft_jstor_id=24772454&rfr_iscdi=true |