Loading…

Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9

Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2013-04, Vol.340 (6128), p.78-81
Main Authors: Lu, Xingwu, Wontakal, Sandeep N., Kavi, Harsh, Kim, Byung Ju, Guzzardo, Paloma M., Emelyanov, Alexander V., Xu, Na, Hannon, Gregory J., Zavadil, Jiri, Fyodorov, Dmitry V., Skoultchi, Arthur I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133
cites cdi_FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133
container_end_page 81
container_issue 6128
container_start_page 78
container_title Science (American Association for the Advancement of Science)
container_volume 340
creator Lu, Xingwu
Wontakal, Sandeep N.
Kavi, Harsh
Kim, Byung Ju
Guzzardo, Paloma M.
Emelyanov, Alexander V.
Xu, Na
Hannon, Gregory J.
Zavadil, Jiri
Fyodorov, Dmitry V.
Skoultchi, Arthur I.
description Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to strong activation of these elements. H1-mediated silencing occurs in combination with the heterochromatin-specific histone H3 lysine 9 methyltransferase Su(var) 3-9. H1 physically interacts with Su(var) 3-9 and recruits it to chromatin in vitro, which promotes H3 methylation. We propose that H1 plays a key role in silencing by tethering Su(var) 3-9 to heterochromatin. The tethering function of H1 adds to its established role as a regulator of chromatin compaction and accessibility.
doi_str_mv 10.1126/science.1234654
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3756538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41942131</jstor_id><sourcerecordid>41942131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133</originalsourceid><addsrcrecordid>eNqFks1v1DAQxS0EokvhzAkUiUs5pLU9trO-IFUFukiVkPi4IVmOM-l6lcRb21lp_3sS7bICLj358H7zNH7zCHnN6CVjXF0l53FweMk4CCXFE7JgVMtScwpPyYJSUOWSVvKMvEhpQ-mkaXhOzjhIqbnQC_LrYwwpbNe-s8WKFd_wfuxsxlTkNRa3OGD2rrh22e983hehLVaYMQa3jqG32Q9FvZ-GXBx97nHIM_F9vNjZ-B5K_ZI8a22X8NXxPSc_P3_6cbMq777efrm5viudpDqXQi9r2aISgBVtuJNWc1s5bh2CENIJAVXTVtxVtnGOSWwarYSql-hkWzOAc_Lh4Lsd6x4bNy0SbWe20fc27k2w3vyrDH5t7sPOQCWVhOVkcHE0iOFhxJRN75PDrrMDhjEZPkUHkgtVPYoyKZkCoSv1OApcgOawnBd49x-6CWMcptBmCjQFrmbq6kC56WgpYnv6IqNm7oM59sEc-zBNvP07mRP_pwAT8OYAbFIO8aQLpgVnwOA3JQK7gQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323903268</pqid></control><display><type>article</type><title>Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Lu, Xingwu ; Wontakal, Sandeep N. ; Kavi, Harsh ; Kim, Byung Ju ; Guzzardo, Paloma M. ; Emelyanov, Alexander V. ; Xu, Na ; Hannon, Gregory J. ; Zavadil, Jiri ; Fyodorov, Dmitry V. ; Skoultchi, Arthur I.</creator><creatorcontrib>Lu, Xingwu ; Wontakal, Sandeep N. ; Kavi, Harsh ; Kim, Byung Ju ; Guzzardo, Paloma M. ; Emelyanov, Alexander V. ; Xu, Na ; Hannon, Gregory J. ; Zavadil, Jiri ; Fyodorov, Dmitry V. ; Skoultchi, Arthur I.</creatorcontrib><description>Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to strong activation of these elements. H1-mediated silencing occurs in combination with the heterochromatin-specific histone H3 lysine 9 methyltransferase Su(var) 3-9. H1 physically interacts with Su(var) 3-9 and recruits it to chromatin in vitro, which promotes H3 methylation. We propose that H1 plays a key role in silencing by tethering Su(var) 3-9 to heterochromatin. The tethering function of H1 adds to its established role as a regulator of chromatin compaction and accessibility.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1234654</identifier><identifier>PMID: 23559249</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Chromatin ; DNA ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Eukaryotes ; gene expression ; Gene Silencing ; Genetic linkage ; Genetics ; Genomes ; germ cells ; Heterochromatin ; Heterochromatin - metabolism ; Histones ; Histones - genetics ; Histones - metabolism ; Insects ; Larvae ; lysine ; methyltransferases ; Muscle Proteins - genetics ; Nucleosomes ; Repetitive Sequences, Nucleic Acid - genetics ; Repressor Proteins - metabolism ; RNA ; RNA Interference ; somatic cells ; Transcription Factors - genetics ; transposons</subject><ispartof>Science (American Association for the Advancement of Science), 2013-04, Vol.340 (6128), p.78-81</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133</citedby><cites>FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41942131$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41942131$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23559249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Xingwu</creatorcontrib><creatorcontrib>Wontakal, Sandeep N.</creatorcontrib><creatorcontrib>Kavi, Harsh</creatorcontrib><creatorcontrib>Kim, Byung Ju</creatorcontrib><creatorcontrib>Guzzardo, Paloma M.</creatorcontrib><creatorcontrib>Emelyanov, Alexander V.</creatorcontrib><creatorcontrib>Xu, Na</creatorcontrib><creatorcontrib>Hannon, Gregory J.</creatorcontrib><creatorcontrib>Zavadil, Jiri</creatorcontrib><creatorcontrib>Fyodorov, Dmitry V.</creatorcontrib><creatorcontrib>Skoultchi, Arthur I.</creatorcontrib><title>Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to strong activation of these elements. H1-mediated silencing occurs in combination with the heterochromatin-specific histone H3 lysine 9 methyltransferase Su(var) 3-9. H1 physically interacts with Su(var) 3-9 and recruits it to chromatin in vitro, which promotes H3 methylation. We propose that H1 plays a key role in silencing by tethering Su(var) 3-9 to heterochromatin. The tethering function of H1 adds to its established role as a regulator of chromatin compaction and accessibility.</description><subject>Animals</subject><subject>Chromatin</subject><subject>DNA</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Eukaryotes</subject><subject>gene expression</subject><subject>Gene Silencing</subject><subject>Genetic linkage</subject><subject>Genetics</subject><subject>Genomes</subject><subject>germ cells</subject><subject>Heterochromatin</subject><subject>Heterochromatin - metabolism</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Insects</subject><subject>Larvae</subject><subject>lysine</subject><subject>methyltransferases</subject><subject>Muscle Proteins - genetics</subject><subject>Nucleosomes</subject><subject>Repetitive Sequences, Nucleic Acid - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>somatic cells</subject><subject>Transcription Factors - genetics</subject><subject>transposons</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFks1v1DAQxS0EokvhzAkUiUs5pLU9trO-IFUFukiVkPi4IVmOM-l6lcRb21lp_3sS7bICLj358H7zNH7zCHnN6CVjXF0l53FweMk4CCXFE7JgVMtScwpPyYJSUOWSVvKMvEhpQ-mkaXhOzjhIqbnQC_LrYwwpbNe-s8WKFd_wfuxsxlTkNRa3OGD2rrh22e983hehLVaYMQa3jqG32Q9FvZ-GXBx97nHIM_F9vNjZ-B5K_ZI8a22X8NXxPSc_P3_6cbMq777efrm5viudpDqXQi9r2aISgBVtuJNWc1s5bh2CENIJAVXTVtxVtnGOSWwarYSql-hkWzOAc_Lh4Lsd6x4bNy0SbWe20fc27k2w3vyrDH5t7sPOQCWVhOVkcHE0iOFhxJRN75PDrrMDhjEZPkUHkgtVPYoyKZkCoSv1OApcgOawnBd49x-6CWMcptBmCjQFrmbq6kC56WgpYnv6IqNm7oM59sEc-zBNvP07mRP_pwAT8OYAbFIO8aQLpgVnwOA3JQK7gQ</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Lu, Xingwu</creator><creator>Wontakal, Sandeep N.</creator><creator>Kavi, Harsh</creator><creator>Kim, Byung Ju</creator><creator>Guzzardo, Paloma M.</creator><creator>Emelyanov, Alexander V.</creator><creator>Xu, Na</creator><creator>Hannon, Gregory J.</creator><creator>Zavadil, Jiri</creator><creator>Fyodorov, Dmitry V.</creator><creator>Skoultchi, Arthur I.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130405</creationdate><title>Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9</title><author>Lu, Xingwu ; Wontakal, Sandeep N. ; Kavi, Harsh ; Kim, Byung Ju ; Guzzardo, Paloma M. ; Emelyanov, Alexander V. ; Xu, Na ; Hannon, Gregory J. ; Zavadil, Jiri ; Fyodorov, Dmitry V. ; Skoultchi, Arthur I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Chromatin</topic><topic>DNA</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Eukaryotes</topic><topic>gene expression</topic><topic>Gene Silencing</topic><topic>Genetic linkage</topic><topic>Genetics</topic><topic>Genomes</topic><topic>germ cells</topic><topic>Heterochromatin</topic><topic>Heterochromatin - metabolism</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Insects</topic><topic>Larvae</topic><topic>lysine</topic><topic>methyltransferases</topic><topic>Muscle Proteins - genetics</topic><topic>Nucleosomes</topic><topic>Repetitive Sequences, Nucleic Acid - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>somatic cells</topic><topic>Transcription Factors - genetics</topic><topic>transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xingwu</creatorcontrib><creatorcontrib>Wontakal, Sandeep N.</creatorcontrib><creatorcontrib>Kavi, Harsh</creatorcontrib><creatorcontrib>Kim, Byung Ju</creatorcontrib><creatorcontrib>Guzzardo, Paloma M.</creatorcontrib><creatorcontrib>Emelyanov, Alexander V.</creatorcontrib><creatorcontrib>Xu, Na</creatorcontrib><creatorcontrib>Hannon, Gregory J.</creatorcontrib><creatorcontrib>Zavadil, Jiri</creatorcontrib><creatorcontrib>Fyodorov, Dmitry V.</creatorcontrib><creatorcontrib>Skoultchi, Arthur I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xingwu</au><au>Wontakal, Sandeep N.</au><au>Kavi, Harsh</au><au>Kim, Byung Ju</au><au>Guzzardo, Paloma M.</au><au>Emelyanov, Alexander V.</au><au>Xu, Na</au><au>Hannon, Gregory J.</au><au>Zavadil, Jiri</au><au>Fyodorov, Dmitry V.</au><au>Skoultchi, Arthur I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-04-05</date><risdate>2013</risdate><volume>340</volume><issue>6128</issue><spage>78</spage><epage>81</epage><pages>78-81</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to strong activation of these elements. H1-mediated silencing occurs in combination with the heterochromatin-specific histone H3 lysine 9 methyltransferase Su(var) 3-9. H1 physically interacts with Su(var) 3-9 and recruits it to chromatin in vitro, which promotes H3 methylation. We propose that H1 plays a key role in silencing by tethering Su(var) 3-9 to heterochromatin. The tethering function of H1 adds to its established role as a regulator of chromatin compaction and accessibility.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23559249</pmid><doi>10.1126/science.1234654</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-04, Vol.340 (6128), p.78-81
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3756538
source American Association for the Advancement of Science; Alma/SFX Local Collection; JSTOR
subjects Animals
Chromatin
DNA
Drosophila
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Eukaryotes
gene expression
Gene Silencing
Genetic linkage
Genetics
Genomes
germ cells
Heterochromatin
Heterochromatin - metabolism
Histones
Histones - genetics
Histones - metabolism
Insects
Larvae
lysine
methyltransferases
Muscle Proteins - genetics
Nucleosomes
Repetitive Sequences, Nucleic Acid - genetics
Repressor Proteins - metabolism
RNA
RNA Interference
somatic cells
Transcription Factors - genetics
transposons
title Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drosophila%20H1%20Regulates%20the%20Genetic%20Activity%20of%20Heterochromatin%20by%20Recruitment%20of%20Su(var)3-9&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lu,%20Xingwu&rft.date=2013-04-05&rft.volume=340&rft.issue=6128&rft.spage=78&rft.epage=81&rft.pages=78-81&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1234654&rft_dat=%3Cjstor_pubme%3E41942131%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323903268&rft_id=info:pmid/23559249&rft_jstor_id=41942131&rfr_iscdi=true