Loading…
Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9
Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2013-04, Vol.340 (6128), p.78-81 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133 |
container_end_page | 81 |
container_issue | 6128 |
container_start_page | 78 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 340 |
creator | Lu, Xingwu Wontakal, Sandeep N. Kavi, Harsh Kim, Byung Ju Guzzardo, Paloma M. Emelyanov, Alexander V. Xu, Na Hannon, Gregory J. Zavadil, Jiri Fyodorov, Dmitry V. Skoultchi, Arthur I. |
description | Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to strong activation of these elements. H1-mediated silencing occurs in combination with the heterochromatin-specific histone H3 lysine 9 methyltransferase Su(var) 3-9. H1 physically interacts with Su(var) 3-9 and recruits it to chromatin in vitro, which promotes H3 methylation. We propose that H1 plays a key role in silencing by tethering Su(var) 3-9 to heterochromatin. The tethering function of H1 adds to its established role as a regulator of chromatin compaction and accessibility. |
doi_str_mv | 10.1126/science.1234654 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3756538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41942131</jstor_id><sourcerecordid>41942131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133</originalsourceid><addsrcrecordid>eNqFks1v1DAQxS0EokvhzAkUiUs5pLU9trO-IFUFukiVkPi4IVmOM-l6lcRb21lp_3sS7bICLj358H7zNH7zCHnN6CVjXF0l53FweMk4CCXFE7JgVMtScwpPyYJSUOWSVvKMvEhpQ-mkaXhOzjhIqbnQC_LrYwwpbNe-s8WKFd_wfuxsxlTkNRa3OGD2rrh22e983hehLVaYMQa3jqG32Q9FvZ-GXBx97nHIM_F9vNjZ-B5K_ZI8a22X8NXxPSc_P3_6cbMq777efrm5viudpDqXQi9r2aISgBVtuJNWc1s5bh2CENIJAVXTVtxVtnGOSWwarYSql-hkWzOAc_Lh4Lsd6x4bNy0SbWe20fc27k2w3vyrDH5t7sPOQCWVhOVkcHE0iOFhxJRN75PDrrMDhjEZPkUHkgtVPYoyKZkCoSv1OApcgOawnBd49x-6CWMcptBmCjQFrmbq6kC56WgpYnv6IqNm7oM59sEc-zBNvP07mRP_pwAT8OYAbFIO8aQLpgVnwOA3JQK7gQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323903268</pqid></control><display><type>article</type><title>Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Lu, Xingwu ; Wontakal, Sandeep N. ; Kavi, Harsh ; Kim, Byung Ju ; Guzzardo, Paloma M. ; Emelyanov, Alexander V. ; Xu, Na ; Hannon, Gregory J. ; Zavadil, Jiri ; Fyodorov, Dmitry V. ; Skoultchi, Arthur I.</creator><creatorcontrib>Lu, Xingwu ; Wontakal, Sandeep N. ; Kavi, Harsh ; Kim, Byung Ju ; Guzzardo, Paloma M. ; Emelyanov, Alexander V. ; Xu, Na ; Hannon, Gregory J. ; Zavadil, Jiri ; Fyodorov, Dmitry V. ; Skoultchi, Arthur I.</creatorcontrib><description>Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to strong activation of these elements. H1-mediated silencing occurs in combination with the heterochromatin-specific histone H3 lysine 9 methyltransferase Su(var) 3-9. H1 physically interacts with Su(var) 3-9 and recruits it to chromatin in vitro, which promotes H3 methylation. We propose that H1 plays a key role in silencing by tethering Su(var) 3-9 to heterochromatin. The tethering function of H1 adds to its established role as a regulator of chromatin compaction and accessibility.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1234654</identifier><identifier>PMID: 23559249</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Chromatin ; DNA ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Eukaryotes ; gene expression ; Gene Silencing ; Genetic linkage ; Genetics ; Genomes ; germ cells ; Heterochromatin ; Heterochromatin - metabolism ; Histones ; Histones - genetics ; Histones - metabolism ; Insects ; Larvae ; lysine ; methyltransferases ; Muscle Proteins - genetics ; Nucleosomes ; Repetitive Sequences, Nucleic Acid - genetics ; Repressor Proteins - metabolism ; RNA ; RNA Interference ; somatic cells ; Transcription Factors - genetics ; transposons</subject><ispartof>Science (American Association for the Advancement of Science), 2013-04, Vol.340 (6128), p.78-81</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133</citedby><cites>FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41942131$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41942131$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23559249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Xingwu</creatorcontrib><creatorcontrib>Wontakal, Sandeep N.</creatorcontrib><creatorcontrib>Kavi, Harsh</creatorcontrib><creatorcontrib>Kim, Byung Ju</creatorcontrib><creatorcontrib>Guzzardo, Paloma M.</creatorcontrib><creatorcontrib>Emelyanov, Alexander V.</creatorcontrib><creatorcontrib>Xu, Na</creatorcontrib><creatorcontrib>Hannon, Gregory J.</creatorcontrib><creatorcontrib>Zavadil, Jiri</creatorcontrib><creatorcontrib>Fyodorov, Dmitry V.</creatorcontrib><creatorcontrib>Skoultchi, Arthur I.</creatorcontrib><title>Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to strong activation of these elements. H1-mediated silencing occurs in combination with the heterochromatin-specific histone H3 lysine 9 methyltransferase Su(var) 3-9. H1 physically interacts with Su(var) 3-9 and recruits it to chromatin in vitro, which promotes H3 methylation. We propose that H1 plays a key role in silencing by tethering Su(var) 3-9 to heterochromatin. The tethering function of H1 adds to its established role as a regulator of chromatin compaction and accessibility.</description><subject>Animals</subject><subject>Chromatin</subject><subject>DNA</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Eukaryotes</subject><subject>gene expression</subject><subject>Gene Silencing</subject><subject>Genetic linkage</subject><subject>Genetics</subject><subject>Genomes</subject><subject>germ cells</subject><subject>Heterochromatin</subject><subject>Heterochromatin - metabolism</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Insects</subject><subject>Larvae</subject><subject>lysine</subject><subject>methyltransferases</subject><subject>Muscle Proteins - genetics</subject><subject>Nucleosomes</subject><subject>Repetitive Sequences, Nucleic Acid - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>somatic cells</subject><subject>Transcription Factors - genetics</subject><subject>transposons</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFks1v1DAQxS0EokvhzAkUiUs5pLU9trO-IFUFukiVkPi4IVmOM-l6lcRb21lp_3sS7bICLj358H7zNH7zCHnN6CVjXF0l53FweMk4CCXFE7JgVMtScwpPyYJSUOWSVvKMvEhpQ-mkaXhOzjhIqbnQC_LrYwwpbNe-s8WKFd_wfuxsxlTkNRa3OGD2rrh22e983hehLVaYMQa3jqG32Q9FvZ-GXBx97nHIM_F9vNjZ-B5K_ZI8a22X8NXxPSc_P3_6cbMq777efrm5viudpDqXQi9r2aISgBVtuJNWc1s5bh2CENIJAVXTVtxVtnGOSWwarYSql-hkWzOAc_Lh4Lsd6x4bNy0SbWe20fc27k2w3vyrDH5t7sPOQCWVhOVkcHE0iOFhxJRN75PDrrMDhjEZPkUHkgtVPYoyKZkCoSv1OApcgOawnBd49x-6CWMcptBmCjQFrmbq6kC56WgpYnv6IqNm7oM59sEc-zBNvP07mRP_pwAT8OYAbFIO8aQLpgVnwOA3JQK7gQ</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Lu, Xingwu</creator><creator>Wontakal, Sandeep N.</creator><creator>Kavi, Harsh</creator><creator>Kim, Byung Ju</creator><creator>Guzzardo, Paloma M.</creator><creator>Emelyanov, Alexander V.</creator><creator>Xu, Na</creator><creator>Hannon, Gregory J.</creator><creator>Zavadil, Jiri</creator><creator>Fyodorov, Dmitry V.</creator><creator>Skoultchi, Arthur I.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130405</creationdate><title>Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9</title><author>Lu, Xingwu ; Wontakal, Sandeep N. ; Kavi, Harsh ; Kim, Byung Ju ; Guzzardo, Paloma M. ; Emelyanov, Alexander V. ; Xu, Na ; Hannon, Gregory J. ; Zavadil, Jiri ; Fyodorov, Dmitry V. ; Skoultchi, Arthur I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Chromatin</topic><topic>DNA</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Eukaryotes</topic><topic>gene expression</topic><topic>Gene Silencing</topic><topic>Genetic linkage</topic><topic>Genetics</topic><topic>Genomes</topic><topic>germ cells</topic><topic>Heterochromatin</topic><topic>Heterochromatin - metabolism</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Insects</topic><topic>Larvae</topic><topic>lysine</topic><topic>methyltransferases</topic><topic>Muscle Proteins - genetics</topic><topic>Nucleosomes</topic><topic>Repetitive Sequences, Nucleic Acid - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>somatic cells</topic><topic>Transcription Factors - genetics</topic><topic>transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xingwu</creatorcontrib><creatorcontrib>Wontakal, Sandeep N.</creatorcontrib><creatorcontrib>Kavi, Harsh</creatorcontrib><creatorcontrib>Kim, Byung Ju</creatorcontrib><creatorcontrib>Guzzardo, Paloma M.</creatorcontrib><creatorcontrib>Emelyanov, Alexander V.</creatorcontrib><creatorcontrib>Xu, Na</creatorcontrib><creatorcontrib>Hannon, Gregory J.</creatorcontrib><creatorcontrib>Zavadil, Jiri</creatorcontrib><creatorcontrib>Fyodorov, Dmitry V.</creatorcontrib><creatorcontrib>Skoultchi, Arthur I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xingwu</au><au>Wontakal, Sandeep N.</au><au>Kavi, Harsh</au><au>Kim, Byung Ju</au><au>Guzzardo, Paloma M.</au><au>Emelyanov, Alexander V.</au><au>Xu, Na</au><au>Hannon, Gregory J.</au><au>Zavadil, Jiri</au><au>Fyodorov, Dmitry V.</au><au>Skoultchi, Arthur I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-04-05</date><risdate>2013</risdate><volume>340</volume><issue>6128</issue><spage>78</spage><epage>81</epage><pages>78-81</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to strong activation of these elements. H1-mediated silencing occurs in combination with the heterochromatin-specific histone H3 lysine 9 methyltransferase Su(var) 3-9. H1 physically interacts with Su(var) 3-9 and recruits it to chromatin in vitro, which promotes H3 methylation. We propose that H1 plays a key role in silencing by tethering Su(var) 3-9 to heterochromatin. The tethering function of H1 adds to its established role as a regulator of chromatin compaction and accessibility.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23559249</pmid><doi>10.1126/science.1234654</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-04, Vol.340 (6128), p.78-81 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3756538 |
source | American Association for the Advancement of Science; Alma/SFX Local Collection; JSTOR |
subjects | Animals Chromatin DNA Drosophila Drosophila melanogaster - genetics Drosophila Proteins - genetics Drosophila Proteins - metabolism Eukaryotes gene expression Gene Silencing Genetic linkage Genetics Genomes germ cells Heterochromatin Heterochromatin - metabolism Histones Histones - genetics Histones - metabolism Insects Larvae lysine methyltransferases Muscle Proteins - genetics Nucleosomes Repetitive Sequences, Nucleic Acid - genetics Repressor Proteins - metabolism RNA RNA Interference somatic cells Transcription Factors - genetics transposons |
title | Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drosophila%20H1%20Regulates%20the%20Genetic%20Activity%20of%20Heterochromatin%20by%20Recruitment%20of%20Su(var)3-9&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lu,%20Xingwu&rft.date=2013-04-05&rft.volume=340&rft.issue=6128&rft.spage=78&rft.epage=81&rft.pages=78-81&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1234654&rft_dat=%3Cjstor_pubme%3E41942131%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-498b5fe643e70d2c5a92a7c2ace3445c4437df72c7adcc15edd9646b8ec5fb133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323903268&rft_id=info:pmid/23559249&rft_jstor_id=41942131&rfr_iscdi=true |