Loading…

The limitations of simple gene set enrichment analysis assuming gene independence

Since its first publication in 2003, the Gene Set Enrichment Analysis method, based on the Kolmogorov-Smirnov statistic, has been heavily used, modified, and also questioned. Recently a simplified approach using a one-sample t-test score to assess enrichment and ignoring gene-gene correlations was p...

Full description

Saved in:
Bibliographic Details
Published in:Statistical methods in medical research 2016-02, Vol.25 (1), p.472-487
Main Authors: Tamayo, Pablo, Steinhardt, George, Liberzon, Arthur, Mesirov, Jill P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-a4578a329c86e665bf48eafd800a2ee317f791b9846e688627761201a6554bf93
cites cdi_FETCH-LOGICAL-c462t-a4578a329c86e665bf48eafd800a2ee317f791b9846e688627761201a6554bf93
container_end_page 487
container_issue 1
container_start_page 472
container_title Statistical methods in medical research
container_volume 25
creator Tamayo, Pablo
Steinhardt, George
Liberzon, Arthur
Mesirov, Jill P
description Since its first publication in 2003, the Gene Set Enrichment Analysis method, based on the Kolmogorov-Smirnov statistic, has been heavily used, modified, and also questioned. Recently a simplified approach using a one-sample t-test score to assess enrichment and ignoring gene-gene correlations was proposed by Irizarry et al. 2009 as a serious contender. The argument criticizes Gene Set Enrichment Analysis’s nonparametric nature and its use of an empirical null distribution as unnecessary and hard to compute. We refute these claims by careful consideration of the assumptions of the simplified method and its results, including a comparison with Gene Set Enrichment Analysis’s on a large benchmark set of 50 datasets. Our results provide strong empirical evidence that gene–gene correlations cannot be ignored due to the significant variance inflation they produced on the enrichment scores and should be taken into account when estimating gene set enrichment significance. In addition, we discuss the challenges that the complex correlation structure and multi-modality of gene sets pose more generally for gene set enrichment methods.
doi_str_mv 10.1177/0962280212460441
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3758419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280212460441</sage_id><sourcerecordid>1878495401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-a4578a329c86e665bf48eafd800a2ee317f791b9846e688627761201a6554bf93</originalsourceid><addsrcrecordid>eNp1kc9LwzAUx4Mobk7vnqTgxUs1SdMkvQgy_AUDEeY5pN1rl9GmtWmF_femdA4deMkLfD_vm5f3ReiS4FtChLjDCadUYkoo45gxcoSmhAkR4ihix2g6yOGgT9CZcxuMscAsOUUTGvlbnNApel-uIShNZTrdmdq6oM4DZ6qmhKAAC4GDLgDbmmxdge0CbXW5dcYF2rm-MrYYKWNX0IA_bAbn6CTXpYOLXZ2hj6fH5fwlXLw9v84fFmHGOO1CzWIhdUSTTHLgPE5zJkHnK4mxpgAREblISJpI5mUpORWCE4qJ5nHM0jyJZuh-9G36tIJV5sdrdama1lS63apaG_VXsWativpLRSKWjAwGNzuDtv7swXWqMi6DstQW6t4pIjinXGBBPHp9gG7qvvW78JQUkiUxwwOFRypra-dayPfDEKyGvNRhXr7l6vcn9g0_AXkgHAGnC_j16n-G30zQnNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878495401</pqid></control><display><type>article</type><title>The limitations of simple gene set enrichment analysis assuming gene independence</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Tamayo, Pablo ; Steinhardt, George ; Liberzon, Arthur ; Mesirov, Jill P</creator><creatorcontrib>Tamayo, Pablo ; Steinhardt, George ; Liberzon, Arthur ; Mesirov, Jill P</creatorcontrib><description>Since its first publication in 2003, the Gene Set Enrichment Analysis method, based on the Kolmogorov-Smirnov statistic, has been heavily used, modified, and also questioned. Recently a simplified approach using a one-sample t-test score to assess enrichment and ignoring gene-gene correlations was proposed by Irizarry et al. 2009 as a serious contender. The argument criticizes Gene Set Enrichment Analysis’s nonparametric nature and its use of an empirical null distribution as unnecessary and hard to compute. We refute these claims by careful consideration of the assumptions of the simplified method and its results, including a comparison with Gene Set Enrichment Analysis’s on a large benchmark set of 50 datasets. Our results provide strong empirical evidence that gene–gene correlations cannot be ignored due to the significant variance inflation they produced on the enrichment scores and should be taken into account when estimating gene set enrichment significance. In addition, we discuss the challenges that the complex correlation structure and multi-modality of gene sets pose more generally for gene set enrichment methods.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280212460441</identifier><identifier>PMID: 23070592</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Binding sites ; Biostatistics ; Databases, Genetic - statistics &amp; numerical data ; Empirical analysis ; Enrichment ; Epistasis, Genetic ; Gene Expression Profiling - statistics &amp; numerical data ; Genome, Human ; Humans ; Inflation ; Knowledge Bases ; Models, Statistical ; Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data ; Statistics, Nonparametric</subject><ispartof>Statistical methods in medical research, 2016-02, Vol.25 (1), p.472-487</ispartof><rights>The Author(s) 2012</rights><rights>The Author(s) 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-a4578a329c86e665bf48eafd800a2ee317f791b9846e688627761201a6554bf93</citedby><cites>FETCH-LOGICAL-c462t-a4578a329c86e665bf48eafd800a2ee317f791b9846e688627761201a6554bf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902,30976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23070592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamayo, Pablo</creatorcontrib><creatorcontrib>Steinhardt, George</creatorcontrib><creatorcontrib>Liberzon, Arthur</creatorcontrib><creatorcontrib>Mesirov, Jill P</creatorcontrib><title>The limitations of simple gene set enrichment analysis assuming gene independence</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Since its first publication in 2003, the Gene Set Enrichment Analysis method, based on the Kolmogorov-Smirnov statistic, has been heavily used, modified, and also questioned. Recently a simplified approach using a one-sample t-test score to assess enrichment and ignoring gene-gene correlations was proposed by Irizarry et al. 2009 as a serious contender. The argument criticizes Gene Set Enrichment Analysis’s nonparametric nature and its use of an empirical null distribution as unnecessary and hard to compute. We refute these claims by careful consideration of the assumptions of the simplified method and its results, including a comparison with Gene Set Enrichment Analysis’s on a large benchmark set of 50 datasets. Our results provide strong empirical evidence that gene–gene correlations cannot be ignored due to the significant variance inflation they produced on the enrichment scores and should be taken into account when estimating gene set enrichment significance. In addition, we discuss the challenges that the complex correlation structure and multi-modality of gene sets pose more generally for gene set enrichment methods.</description><subject>Binding sites</subject><subject>Biostatistics</subject><subject>Databases, Genetic - statistics &amp; numerical data</subject><subject>Empirical analysis</subject><subject>Enrichment</subject><subject>Epistasis, Genetic</subject><subject>Gene Expression Profiling - statistics &amp; numerical data</subject><subject>Genome, Human</subject><subject>Humans</subject><subject>Inflation</subject><subject>Knowledge Bases</subject><subject>Models, Statistical</subject><subject>Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data</subject><subject>Statistics, Nonparametric</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kc9LwzAUx4Mobk7vnqTgxUs1SdMkvQgy_AUDEeY5pN1rl9GmtWmF_femdA4deMkLfD_vm5f3ReiS4FtChLjDCadUYkoo45gxcoSmhAkR4ihix2g6yOGgT9CZcxuMscAsOUUTGvlbnNApel-uIShNZTrdmdq6oM4DZ6qmhKAAC4GDLgDbmmxdge0CbXW5dcYF2rm-MrYYKWNX0IA_bAbn6CTXpYOLXZ2hj6fH5fwlXLw9v84fFmHGOO1CzWIhdUSTTHLgPE5zJkHnK4mxpgAREblISJpI5mUpORWCE4qJ5nHM0jyJZuh-9G36tIJV5sdrdama1lS63apaG_VXsWativpLRSKWjAwGNzuDtv7swXWqMi6DstQW6t4pIjinXGBBPHp9gG7qvvW78JQUkiUxwwOFRypra-dayPfDEKyGvNRhXr7l6vcn9g0_AXkgHAGnC_j16n-G30zQnNw</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Tamayo, Pablo</creator><creator>Steinhardt, George</creator><creator>Liberzon, Arthur</creator><creator>Mesirov, Jill P</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>The limitations of simple gene set enrichment analysis assuming gene independence</title><author>Tamayo, Pablo ; Steinhardt, George ; Liberzon, Arthur ; Mesirov, Jill P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-a4578a329c86e665bf48eafd800a2ee317f791b9846e688627761201a6554bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binding sites</topic><topic>Biostatistics</topic><topic>Databases, Genetic - statistics &amp; numerical data</topic><topic>Empirical analysis</topic><topic>Enrichment</topic><topic>Epistasis, Genetic</topic><topic>Gene Expression Profiling - statistics &amp; numerical data</topic><topic>Genome, Human</topic><topic>Humans</topic><topic>Inflation</topic><topic>Knowledge Bases</topic><topic>Models, Statistical</topic><topic>Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data</topic><topic>Statistics, Nonparametric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamayo, Pablo</creatorcontrib><creatorcontrib>Steinhardt, George</creatorcontrib><creatorcontrib>Liberzon, Arthur</creatorcontrib><creatorcontrib>Mesirov, Jill P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamayo, Pablo</au><au>Steinhardt, George</au><au>Liberzon, Arthur</au><au>Mesirov, Jill P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The limitations of simple gene set enrichment analysis assuming gene independence</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>25</volume><issue>1</issue><spage>472</spage><epage>487</epage><pages>472-487</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Since its first publication in 2003, the Gene Set Enrichment Analysis method, based on the Kolmogorov-Smirnov statistic, has been heavily used, modified, and also questioned. Recently a simplified approach using a one-sample t-test score to assess enrichment and ignoring gene-gene correlations was proposed by Irizarry et al. 2009 as a serious contender. The argument criticizes Gene Set Enrichment Analysis’s nonparametric nature and its use of an empirical null distribution as unnecessary and hard to compute. We refute these claims by careful consideration of the assumptions of the simplified method and its results, including a comparison with Gene Set Enrichment Analysis’s on a large benchmark set of 50 datasets. Our results provide strong empirical evidence that gene–gene correlations cannot be ignored due to the significant variance inflation they produced on the enrichment scores and should be taken into account when estimating gene set enrichment significance. In addition, we discuss the challenges that the complex correlation structure and multi-modality of gene sets pose more generally for gene set enrichment methods.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>23070592</pmid><doi>10.1177/0962280212460441</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2016-02, Vol.25 (1), p.472-487
issn 0962-2802
1477-0334
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3758419
source Applied Social Sciences Index & Abstracts (ASSIA); SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)
subjects Binding sites
Biostatistics
Databases, Genetic - statistics & numerical data
Empirical analysis
Enrichment
Epistasis, Genetic
Gene Expression Profiling - statistics & numerical data
Genome, Human
Humans
Inflation
Knowledge Bases
Models, Statistical
Oligonucleotide Array Sequence Analysis - statistics & numerical data
Statistics, Nonparametric
title The limitations of simple gene set enrichment analysis assuming gene independence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20limitations%20of%20simple%20gene%20set%20enrichment%20analysis%20assuming%20gene%20independence&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Tamayo,%20Pablo&rft.date=2016-02-01&rft.volume=25&rft.issue=1&rft.spage=472&rft.epage=487&rft.pages=472-487&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280212460441&rft_dat=%3Cproquest_pubme%3E1878495401%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-a4578a329c86e665bf48eafd800a2ee317f791b9846e688627761201a6554bf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1878495401&rft_id=info:pmid/23070592&rft_sage_id=10.1177_0962280212460441&rfr_iscdi=true