Loading…

Proanthocyanidin Attenuation of Oxidative Stress and NF-κB Protects Apolipoprotein E-Deficient Mice against Diabetic Nephropathy

Hyperlipidemia and hyperglycemia result in oxidative stress and play a major role in the development of diabetic nephropathy (DN). We explored the effects of proanthocyanidin (PA) on the induction and progression of DN in apolipoprotein E-deficient mice. Diabetes Mellitus was induced in ten-week-old...

Full description

Saved in:
Bibliographic Details
Published in:Evidence-based complementary and alternative medicine 2013-01, Vol.2013 (2013), p.1-8
Main Authors: al-Malki, Abdulrahman L., Sayed, Ahmed Amir Radwan, El Rabey, Haddad A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperlipidemia and hyperglycemia result in oxidative stress and play a major role in the development of diabetic nephropathy (DN). We explored the effects of proanthocyanidin (PA) on the induction and progression of DN in apolipoprotein E-deficient mice. Diabetes Mellitus was induced in ten-week-old male apoE−/−mice using streptozotocin (STZ). Mice were fed with a high-fat diet in presence or absence of PA. PA treatment significantly reduced the high cholesterol levels, restored renal functions, and reduced albuminuria in the PA-treated diabetic mice compared with the diabetic untreated mice. In addition, the glomerular mesangial expansion in the diabetic mice was attenuated as a result of PA supplementation. Moreover, PA treatment restored the elevated levels of MDA and CML and the reduced activity of SOD and GSH in the diabetic mice. Furthermore, PA feeding reduced the activation and translocation of NF-κB to the nucleus compared with the diabetic untreated animals. Reduction of NF-κB activation resulted in the attenuation of the expression of IL-6, TGFβ, and RAGE which protected PA-treated mice against DN. The renoprotective effects of PA were found to be time independent regardless of whether the dietary feeding with PA was started pre-, co-, or post-STZ injection. In conclusion, part of the beneficial effects of PA includes the disruption of the detrimental AGE-RAGE-NFκB pathways.
ISSN:1741-427X
1741-4288
DOI:10.1155/2013/769409