Loading…
Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity
Epilepsy is a condition affecting 1–2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgen...
Saved in:
Published in: | Neuropharmacology 2013-10, Vol.73, p.48-55 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853 |
---|---|
cites | cdi_FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853 |
container_end_page | 55 |
container_issue | |
container_start_page | 48 |
container_title | Neuropharmacology |
container_volume | 73 |
creator | Diao, Lihong Hellier, Jennifer L. Uskert-Newsom, Jessica Williams, Philip A. Staley, Kevin J. Yee, Audrey S. |
description | Epilepsy is a condition affecting 1–2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgent need to identify novel targets for therapy. Here, we utilized the in-vitro CA3 burst preparation to examine alterations in network excitability, characterized by changes in interburst interval. Specifically, we show that bath application of three different sodium channel blockers—diphenytoin, riluzole, and lidocaine—slow spontaneous CA3 bursts. This in turn, decreased the epileptiform activity. These compounds work at different sites on voltage-gated sodium channels, but produce a similar network phenotype of decreased excitability. In the case of diphenytoin and riluzole, the change in network activity (i.e., increased interburst intervals) was persistent following drug washout. Lidocaine application, however, only increased the CA3 interburst interval when it was in the bath solution. Thus, its action was not permanent and resulted in returning CA3 bursting to baseline levels. These data demonstrate that the CA3 burst preparation provides a relatively easy and quick platform for identifying compounds that can decrease network excitability, providing the initial screen for further and more complex in-vivo, freely-behaving animal studies.
•Three different Na+-channel blockers decrease network CA3 bursting.•Diphenytoin persistently slows spontaneous CA3 bursts.•Riluzole persistently slows spontaneous CA3 bursts.•Lidocaine transiently slows spontaneous CA3 bursts. |
doi_str_mv | 10.1016/j.neuropharm.2013.04.057 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3766392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0028390813002141</els_id><sourcerecordid>1500800805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853</originalsourceid><addsrcrecordid>eNqFkd-O1CAUhxujccfVVzBcerFTodBCvTDR9W-yiTfrNaFwas9IS4V2zPgavrCMs656tQkJBL7zceBXFITRklHWPN-VE6wxzIOJY1lRxksqSlrLe8WGKcm3kjbifrGhtFJb3lJ1VjxKaUcpFYqph8VZxSWVeb0pfr7BeYDpsAScLkhEv_4IHoiZHPHogjU4wQtyPUQAkoLDdSR2MNMEnnQ-2K8Q0wX5jstAHPY9RJgWMsIRwTQmEnpi7IIhux3YCCYBGXCes3icjScwo4d5wT7E8Te5x-XwuHjQG5_gyc18Xnx-9_b68sP26tP7j5evrra2ZtWybVwnQEAteg5dw1zNhZSyAimatukr6Vin2l7VvO45rZuWVtxQZQVrOilM3j8vXp6889qN4GzuPRqv54ijiQcdDOr_TyYc9Jew11w2DW-rLHh2I4jh2wpp0SMmC96bCcKaNKspVcdR340KTlUtWkkzqk6ojSGlCP1tR4zqY_x6p__Gr4_xayp0jj-XPv33RbeFf_LOwOsTAPlf9whRJ4swWXAYwS7aBbz7ll_Cv8pU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430854970</pqid></control><display><type>article</type><title>Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity</title><source>ScienceDirect Freedom Collection</source><creator>Diao, Lihong ; Hellier, Jennifer L. ; Uskert-Newsom, Jessica ; Williams, Philip A. ; Staley, Kevin J. ; Yee, Audrey S.</creator><creatorcontrib>Diao, Lihong ; Hellier, Jennifer L. ; Uskert-Newsom, Jessica ; Williams, Philip A. ; Staley, Kevin J. ; Yee, Audrey S.</creatorcontrib><description>Epilepsy is a condition affecting 1–2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgent need to identify novel targets for therapy. Here, we utilized the in-vitro CA3 burst preparation to examine alterations in network excitability, characterized by changes in interburst interval. Specifically, we show that bath application of three different sodium channel blockers—diphenytoin, riluzole, and lidocaine—slow spontaneous CA3 bursts. This in turn, decreased the epileptiform activity. These compounds work at different sites on voltage-gated sodium channels, but produce a similar network phenotype of decreased excitability. In the case of diphenytoin and riluzole, the change in network activity (i.e., increased interburst intervals) was persistent following drug washout. Lidocaine application, however, only increased the CA3 interburst interval when it was in the bath solution. Thus, its action was not permanent and resulted in returning CA3 bursting to baseline levels. These data demonstrate that the CA3 burst preparation provides a relatively easy and quick platform for identifying compounds that can decrease network excitability, providing the initial screen for further and more complex in-vivo, freely-behaving animal studies.
•Three different Na+-channel blockers decrease network CA3 bursting.•Diphenytoin persistently slows spontaneous CA3 bursts.•Riluzole persistently slows spontaneous CA3 bursts.•Lidocaine transiently slows spontaneous CA3 bursts.</description><identifier>ISSN: 0028-3908</identifier><identifier>EISSN: 1873-7064</identifier><identifier>DOI: 10.1016/j.neuropharm.2013.04.057</identifier><identifier>PMID: 23707481</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; CA3 ; CA3 Region, Hippocampal - drug effects ; CA3 Region, Hippocampal - physiology ; Data processing ; Diphenytoin ; Electric Stimulation ; Epilepsy ; Evoked Potentials - drug effects ; Evoked Potentials - physiology ; Hyperexcitability ; Lidocaine ; Lidocaine - pharmacology ; Male ; Phenytoin - pharmacology ; Rats ; Riluzole ; Riluzole - pharmacology ; Voltage-Gated Sodium Channel Blockers - pharmacology</subject><ispartof>Neuropharmacology, 2013-10, Vol.73, p.48-55</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>2013 Elsevier Ltd. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853</citedby><cites>FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23707481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diao, Lihong</creatorcontrib><creatorcontrib>Hellier, Jennifer L.</creatorcontrib><creatorcontrib>Uskert-Newsom, Jessica</creatorcontrib><creatorcontrib>Williams, Philip A.</creatorcontrib><creatorcontrib>Staley, Kevin J.</creatorcontrib><creatorcontrib>Yee, Audrey S.</creatorcontrib><title>Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity</title><title>Neuropharmacology</title><addtitle>Neuropharmacology</addtitle><description>Epilepsy is a condition affecting 1–2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgent need to identify novel targets for therapy. Here, we utilized the in-vitro CA3 burst preparation to examine alterations in network excitability, characterized by changes in interburst interval. Specifically, we show that bath application of three different sodium channel blockers—diphenytoin, riluzole, and lidocaine—slow spontaneous CA3 bursts. This in turn, decreased the epileptiform activity. These compounds work at different sites on voltage-gated sodium channels, but produce a similar network phenotype of decreased excitability. In the case of diphenytoin and riluzole, the change in network activity (i.e., increased interburst intervals) was persistent following drug washout. Lidocaine application, however, only increased the CA3 interburst interval when it was in the bath solution. Thus, its action was not permanent and resulted in returning CA3 bursting to baseline levels. These data demonstrate that the CA3 burst preparation provides a relatively easy and quick platform for identifying compounds that can decrease network excitability, providing the initial screen for further and more complex in-vivo, freely-behaving animal studies.
•Three different Na+-channel blockers decrease network CA3 bursting.•Diphenytoin persistently slows spontaneous CA3 bursts.•Riluzole persistently slows spontaneous CA3 bursts.•Lidocaine transiently slows spontaneous CA3 bursts.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>CA3</subject><subject>CA3 Region, Hippocampal - drug effects</subject><subject>CA3 Region, Hippocampal - physiology</subject><subject>Data processing</subject><subject>Diphenytoin</subject><subject>Electric Stimulation</subject><subject>Epilepsy</subject><subject>Evoked Potentials - drug effects</subject><subject>Evoked Potentials - physiology</subject><subject>Hyperexcitability</subject><subject>Lidocaine</subject><subject>Lidocaine - pharmacology</subject><subject>Male</subject><subject>Phenytoin - pharmacology</subject><subject>Rats</subject><subject>Riluzole</subject><subject>Riluzole - pharmacology</subject><subject>Voltage-Gated Sodium Channel Blockers - pharmacology</subject><issn>0028-3908</issn><issn>1873-7064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkd-O1CAUhxujccfVVzBcerFTodBCvTDR9W-yiTfrNaFwas9IS4V2zPgavrCMs656tQkJBL7zceBXFITRklHWPN-VE6wxzIOJY1lRxksqSlrLe8WGKcm3kjbifrGhtFJb3lJ1VjxKaUcpFYqph8VZxSWVeb0pfr7BeYDpsAScLkhEv_4IHoiZHPHogjU4wQtyPUQAkoLDdSR2MNMEnnQ-2K8Q0wX5jstAHPY9RJgWMsIRwTQmEnpi7IIhux3YCCYBGXCes3icjScwo4d5wT7E8Te5x-XwuHjQG5_gyc18Xnx-9_b68sP26tP7j5evrra2ZtWybVwnQEAteg5dw1zNhZSyAimatukr6Vin2l7VvO45rZuWVtxQZQVrOilM3j8vXp6889qN4GzuPRqv54ijiQcdDOr_TyYc9Jew11w2DW-rLHh2I4jh2wpp0SMmC96bCcKaNKspVcdR340KTlUtWkkzqk6ojSGlCP1tR4zqY_x6p__Gr4_xayp0jj-XPv33RbeFf_LOwOsTAPlf9whRJ4swWXAYwS7aBbz7ll_Cv8pU</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Diao, Lihong</creator><creator>Hellier, Jennifer L.</creator><creator>Uskert-Newsom, Jessica</creator><creator>Williams, Philip A.</creator><creator>Staley, Kevin J.</creator><creator>Yee, Audrey S.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity</title><author>Diao, Lihong ; Hellier, Jennifer L. ; Uskert-Newsom, Jessica ; Williams, Philip A. ; Staley, Kevin J. ; Yee, Audrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>CA3</topic><topic>CA3 Region, Hippocampal - drug effects</topic><topic>CA3 Region, Hippocampal - physiology</topic><topic>Data processing</topic><topic>Diphenytoin</topic><topic>Electric Stimulation</topic><topic>Epilepsy</topic><topic>Evoked Potentials - drug effects</topic><topic>Evoked Potentials - physiology</topic><topic>Hyperexcitability</topic><topic>Lidocaine</topic><topic>Lidocaine - pharmacology</topic><topic>Male</topic><topic>Phenytoin - pharmacology</topic><topic>Rats</topic><topic>Riluzole</topic><topic>Riluzole - pharmacology</topic><topic>Voltage-Gated Sodium Channel Blockers - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diao, Lihong</creatorcontrib><creatorcontrib>Hellier, Jennifer L.</creatorcontrib><creatorcontrib>Uskert-Newsom, Jessica</creatorcontrib><creatorcontrib>Williams, Philip A.</creatorcontrib><creatorcontrib>Staley, Kevin J.</creatorcontrib><creatorcontrib>Yee, Audrey S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diao, Lihong</au><au>Hellier, Jennifer L.</au><au>Uskert-Newsom, Jessica</au><au>Williams, Philip A.</au><au>Staley, Kevin J.</au><au>Yee, Audrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity</atitle><jtitle>Neuropharmacology</jtitle><addtitle>Neuropharmacology</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>73</volume><spage>48</spage><epage>55</epage><pages>48-55</pages><issn>0028-3908</issn><eissn>1873-7064</eissn><abstract>Epilepsy is a condition affecting 1–2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgent need to identify novel targets for therapy. Here, we utilized the in-vitro CA3 burst preparation to examine alterations in network excitability, characterized by changes in interburst interval. Specifically, we show that bath application of three different sodium channel blockers—diphenytoin, riluzole, and lidocaine—slow spontaneous CA3 bursts. This in turn, decreased the epileptiform activity. These compounds work at different sites on voltage-gated sodium channels, but produce a similar network phenotype of decreased excitability. In the case of diphenytoin and riluzole, the change in network activity (i.e., increased interburst intervals) was persistent following drug washout. Lidocaine application, however, only increased the CA3 interburst interval when it was in the bath solution. Thus, its action was not permanent and resulted in returning CA3 bursting to baseline levels. These data demonstrate that the CA3 burst preparation provides a relatively easy and quick platform for identifying compounds that can decrease network excitability, providing the initial screen for further and more complex in-vivo, freely-behaving animal studies.
•Three different Na+-channel blockers decrease network CA3 bursting.•Diphenytoin persistently slows spontaneous CA3 bursts.•Riluzole persistently slows spontaneous CA3 bursts.•Lidocaine transiently slows spontaneous CA3 bursts.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23707481</pmid><doi>10.1016/j.neuropharm.2013.04.057</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3908 |
ispartof | Neuropharmacology, 2013-10, Vol.73, p.48-55 |
issn | 0028-3908 1873-7064 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3766392 |
source | ScienceDirect Freedom Collection |
subjects | Action Potentials - drug effects Action Potentials - physiology Animals CA3 CA3 Region, Hippocampal - drug effects CA3 Region, Hippocampal - physiology Data processing Diphenytoin Electric Stimulation Epilepsy Evoked Potentials - drug effects Evoked Potentials - physiology Hyperexcitability Lidocaine Lidocaine - pharmacology Male Phenytoin - pharmacology Rats Riluzole Riluzole - pharmacology Voltage-Gated Sodium Channel Blockers - pharmacology |
title | Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diphenytoin,%20riluzole%20and%20lidocaine:%20Three%20sodium%20channel%20blockers,%20with%20different%20mechanisms%20of%20action,%20decrease%20hippocampal%20epileptiform%20activity&rft.jtitle=Neuropharmacology&rft.au=Diao,%20Lihong&rft.date=2013-10-01&rft.volume=73&rft.spage=48&rft.epage=55&rft.pages=48-55&rft.issn=0028-3908&rft.eissn=1873-7064&rft_id=info:doi/10.1016/j.neuropharm.2013.04.057&rft_dat=%3Cproquest_pubme%3E1500800805%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1430854970&rft_id=info:pmid/23707481&rfr_iscdi=true |