Loading…

Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity

Epilepsy is a condition affecting 1–2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgen...

Full description

Saved in:
Bibliographic Details
Published in:Neuropharmacology 2013-10, Vol.73, p.48-55
Main Authors: Diao, Lihong, Hellier, Jennifer L., Uskert-Newsom, Jessica, Williams, Philip A., Staley, Kevin J., Yee, Audrey S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853
cites cdi_FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853
container_end_page 55
container_issue
container_start_page 48
container_title Neuropharmacology
container_volume 73
creator Diao, Lihong
Hellier, Jennifer L.
Uskert-Newsom, Jessica
Williams, Philip A.
Staley, Kevin J.
Yee, Audrey S.
description Epilepsy is a condition affecting 1–2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgent need to identify novel targets for therapy. Here, we utilized the in-vitro CA3 burst preparation to examine alterations in network excitability, characterized by changes in interburst interval. Specifically, we show that bath application of three different sodium channel blockers—diphenytoin, riluzole, and lidocaine—slow spontaneous CA3 bursts. This in turn, decreased the epileptiform activity. These compounds work at different sites on voltage-gated sodium channels, but produce a similar network phenotype of decreased excitability. In the case of diphenytoin and riluzole, the change in network activity (i.e., increased interburst intervals) was persistent following drug washout. Lidocaine application, however, only increased the CA3 interburst interval when it was in the bath solution. Thus, its action was not permanent and resulted in returning CA3 bursting to baseline levels. These data demonstrate that the CA3 burst preparation provides a relatively easy and quick platform for identifying compounds that can decrease network excitability, providing the initial screen for further and more complex in-vivo, freely-behaving animal studies. •Three different Na+-channel blockers decrease network CA3 bursting.•Diphenytoin persistently slows spontaneous CA3 bursts.•Riluzole persistently slows spontaneous CA3 bursts.•Lidocaine transiently slows spontaneous CA3 bursts.
doi_str_mv 10.1016/j.neuropharm.2013.04.057
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3766392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0028390813002141</els_id><sourcerecordid>1500800805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853</originalsourceid><addsrcrecordid>eNqFkd-O1CAUhxujccfVVzBcerFTodBCvTDR9W-yiTfrNaFwas9IS4V2zPgavrCMs656tQkJBL7zceBXFITRklHWPN-VE6wxzIOJY1lRxksqSlrLe8WGKcm3kjbifrGhtFJb3lJ1VjxKaUcpFYqph8VZxSWVeb0pfr7BeYDpsAScLkhEv_4IHoiZHPHogjU4wQtyPUQAkoLDdSR2MNMEnnQ-2K8Q0wX5jstAHPY9RJgWMsIRwTQmEnpi7IIhux3YCCYBGXCes3icjScwo4d5wT7E8Te5x-XwuHjQG5_gyc18Xnx-9_b68sP26tP7j5evrra2ZtWybVwnQEAteg5dw1zNhZSyAimatukr6Vin2l7VvO45rZuWVtxQZQVrOilM3j8vXp6889qN4GzuPRqv54ijiQcdDOr_TyYc9Jew11w2DW-rLHh2I4jh2wpp0SMmC96bCcKaNKspVcdR340KTlUtWkkzqk6ojSGlCP1tR4zqY_x6p__Gr4_xayp0jj-XPv33RbeFf_LOwOsTAPlf9whRJ4swWXAYwS7aBbz7ll_Cv8pU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430854970</pqid></control><display><type>article</type><title>Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity</title><source>ScienceDirect Freedom Collection</source><creator>Diao, Lihong ; Hellier, Jennifer L. ; Uskert-Newsom, Jessica ; Williams, Philip A. ; Staley, Kevin J. ; Yee, Audrey S.</creator><creatorcontrib>Diao, Lihong ; Hellier, Jennifer L. ; Uskert-Newsom, Jessica ; Williams, Philip A. ; Staley, Kevin J. ; Yee, Audrey S.</creatorcontrib><description>Epilepsy is a condition affecting 1–2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgent need to identify novel targets for therapy. Here, we utilized the in-vitro CA3 burst preparation to examine alterations in network excitability, characterized by changes in interburst interval. Specifically, we show that bath application of three different sodium channel blockers—diphenytoin, riluzole, and lidocaine—slow spontaneous CA3 bursts. This in turn, decreased the epileptiform activity. These compounds work at different sites on voltage-gated sodium channels, but produce a similar network phenotype of decreased excitability. In the case of diphenytoin and riluzole, the change in network activity (i.e., increased interburst intervals) was persistent following drug washout. Lidocaine application, however, only increased the CA3 interburst interval when it was in the bath solution. Thus, its action was not permanent and resulted in returning CA3 bursting to baseline levels. These data demonstrate that the CA3 burst preparation provides a relatively easy and quick platform for identifying compounds that can decrease network excitability, providing the initial screen for further and more complex in-vivo, freely-behaving animal studies. •Three different Na+-channel blockers decrease network CA3 bursting.•Diphenytoin persistently slows spontaneous CA3 bursts.•Riluzole persistently slows spontaneous CA3 bursts.•Lidocaine transiently slows spontaneous CA3 bursts.</description><identifier>ISSN: 0028-3908</identifier><identifier>EISSN: 1873-7064</identifier><identifier>DOI: 10.1016/j.neuropharm.2013.04.057</identifier><identifier>PMID: 23707481</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; CA3 ; CA3 Region, Hippocampal - drug effects ; CA3 Region, Hippocampal - physiology ; Data processing ; Diphenytoin ; Electric Stimulation ; Epilepsy ; Evoked Potentials - drug effects ; Evoked Potentials - physiology ; Hyperexcitability ; Lidocaine ; Lidocaine - pharmacology ; Male ; Phenytoin - pharmacology ; Rats ; Riluzole ; Riluzole - pharmacology ; Voltage-Gated Sodium Channel Blockers - pharmacology</subject><ispartof>Neuropharmacology, 2013-10, Vol.73, p.48-55</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>2013 Elsevier Ltd. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853</citedby><cites>FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23707481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diao, Lihong</creatorcontrib><creatorcontrib>Hellier, Jennifer L.</creatorcontrib><creatorcontrib>Uskert-Newsom, Jessica</creatorcontrib><creatorcontrib>Williams, Philip A.</creatorcontrib><creatorcontrib>Staley, Kevin J.</creatorcontrib><creatorcontrib>Yee, Audrey S.</creatorcontrib><title>Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity</title><title>Neuropharmacology</title><addtitle>Neuropharmacology</addtitle><description>Epilepsy is a condition affecting 1–2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgent need to identify novel targets for therapy. Here, we utilized the in-vitro CA3 burst preparation to examine alterations in network excitability, characterized by changes in interburst interval. Specifically, we show that bath application of three different sodium channel blockers—diphenytoin, riluzole, and lidocaine—slow spontaneous CA3 bursts. This in turn, decreased the epileptiform activity. These compounds work at different sites on voltage-gated sodium channels, but produce a similar network phenotype of decreased excitability. In the case of diphenytoin and riluzole, the change in network activity (i.e., increased interburst intervals) was persistent following drug washout. Lidocaine application, however, only increased the CA3 interburst interval when it was in the bath solution. Thus, its action was not permanent and resulted in returning CA3 bursting to baseline levels. These data demonstrate that the CA3 burst preparation provides a relatively easy and quick platform for identifying compounds that can decrease network excitability, providing the initial screen for further and more complex in-vivo, freely-behaving animal studies. •Three different Na+-channel blockers decrease network CA3 bursting.•Diphenytoin persistently slows spontaneous CA3 bursts.•Riluzole persistently slows spontaneous CA3 bursts.•Lidocaine transiently slows spontaneous CA3 bursts.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>CA3</subject><subject>CA3 Region, Hippocampal - drug effects</subject><subject>CA3 Region, Hippocampal - physiology</subject><subject>Data processing</subject><subject>Diphenytoin</subject><subject>Electric Stimulation</subject><subject>Epilepsy</subject><subject>Evoked Potentials - drug effects</subject><subject>Evoked Potentials - physiology</subject><subject>Hyperexcitability</subject><subject>Lidocaine</subject><subject>Lidocaine - pharmacology</subject><subject>Male</subject><subject>Phenytoin - pharmacology</subject><subject>Rats</subject><subject>Riluzole</subject><subject>Riluzole - pharmacology</subject><subject>Voltage-Gated Sodium Channel Blockers - pharmacology</subject><issn>0028-3908</issn><issn>1873-7064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkd-O1CAUhxujccfVVzBcerFTodBCvTDR9W-yiTfrNaFwas9IS4V2zPgavrCMs656tQkJBL7zceBXFITRklHWPN-VE6wxzIOJY1lRxksqSlrLe8WGKcm3kjbifrGhtFJb3lJ1VjxKaUcpFYqph8VZxSWVeb0pfr7BeYDpsAScLkhEv_4IHoiZHPHogjU4wQtyPUQAkoLDdSR2MNMEnnQ-2K8Q0wX5jstAHPY9RJgWMsIRwTQmEnpi7IIhux3YCCYBGXCes3icjScwo4d5wT7E8Te5x-XwuHjQG5_gyc18Xnx-9_b68sP26tP7j5evrra2ZtWybVwnQEAteg5dw1zNhZSyAimatukr6Vin2l7VvO45rZuWVtxQZQVrOilM3j8vXp6889qN4GzuPRqv54ijiQcdDOr_TyYc9Jew11w2DW-rLHh2I4jh2wpp0SMmC96bCcKaNKspVcdR340KTlUtWkkzqk6ojSGlCP1tR4zqY_x6p__Gr4_xayp0jj-XPv33RbeFf_LOwOsTAPlf9whRJ4swWXAYwS7aBbz7ll_Cv8pU</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Diao, Lihong</creator><creator>Hellier, Jennifer L.</creator><creator>Uskert-Newsom, Jessica</creator><creator>Williams, Philip A.</creator><creator>Staley, Kevin J.</creator><creator>Yee, Audrey S.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity</title><author>Diao, Lihong ; Hellier, Jennifer L. ; Uskert-Newsom, Jessica ; Williams, Philip A. ; Staley, Kevin J. ; Yee, Audrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>CA3</topic><topic>CA3 Region, Hippocampal - drug effects</topic><topic>CA3 Region, Hippocampal - physiology</topic><topic>Data processing</topic><topic>Diphenytoin</topic><topic>Electric Stimulation</topic><topic>Epilepsy</topic><topic>Evoked Potentials - drug effects</topic><topic>Evoked Potentials - physiology</topic><topic>Hyperexcitability</topic><topic>Lidocaine</topic><topic>Lidocaine - pharmacology</topic><topic>Male</topic><topic>Phenytoin - pharmacology</topic><topic>Rats</topic><topic>Riluzole</topic><topic>Riluzole - pharmacology</topic><topic>Voltage-Gated Sodium Channel Blockers - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diao, Lihong</creatorcontrib><creatorcontrib>Hellier, Jennifer L.</creatorcontrib><creatorcontrib>Uskert-Newsom, Jessica</creatorcontrib><creatorcontrib>Williams, Philip A.</creatorcontrib><creatorcontrib>Staley, Kevin J.</creatorcontrib><creatorcontrib>Yee, Audrey S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diao, Lihong</au><au>Hellier, Jennifer L.</au><au>Uskert-Newsom, Jessica</au><au>Williams, Philip A.</au><au>Staley, Kevin J.</au><au>Yee, Audrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity</atitle><jtitle>Neuropharmacology</jtitle><addtitle>Neuropharmacology</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>73</volume><spage>48</spage><epage>55</epage><pages>48-55</pages><issn>0028-3908</issn><eissn>1873-7064</eissn><abstract>Epilepsy is a condition affecting 1–2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgent need to identify novel targets for therapy. Here, we utilized the in-vitro CA3 burst preparation to examine alterations in network excitability, characterized by changes in interburst interval. Specifically, we show that bath application of three different sodium channel blockers—diphenytoin, riluzole, and lidocaine—slow spontaneous CA3 bursts. This in turn, decreased the epileptiform activity. These compounds work at different sites on voltage-gated sodium channels, but produce a similar network phenotype of decreased excitability. In the case of diphenytoin and riluzole, the change in network activity (i.e., increased interburst intervals) was persistent following drug washout. Lidocaine application, however, only increased the CA3 interburst interval when it was in the bath solution. Thus, its action was not permanent and resulted in returning CA3 bursting to baseline levels. These data demonstrate that the CA3 burst preparation provides a relatively easy and quick platform for identifying compounds that can decrease network excitability, providing the initial screen for further and more complex in-vivo, freely-behaving animal studies. •Three different Na+-channel blockers decrease network CA3 bursting.•Diphenytoin persistently slows spontaneous CA3 bursts.•Riluzole persistently slows spontaneous CA3 bursts.•Lidocaine transiently slows spontaneous CA3 bursts.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23707481</pmid><doi>10.1016/j.neuropharm.2013.04.057</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3908
ispartof Neuropharmacology, 2013-10, Vol.73, p.48-55
issn 0028-3908
1873-7064
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3766392
source ScienceDirect Freedom Collection
subjects Action Potentials - drug effects
Action Potentials - physiology
Animals
CA3
CA3 Region, Hippocampal - drug effects
CA3 Region, Hippocampal - physiology
Data processing
Diphenytoin
Electric Stimulation
Epilepsy
Evoked Potentials - drug effects
Evoked Potentials - physiology
Hyperexcitability
Lidocaine
Lidocaine - pharmacology
Male
Phenytoin - pharmacology
Rats
Riluzole
Riluzole - pharmacology
Voltage-Gated Sodium Channel Blockers - pharmacology
title Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diphenytoin,%20riluzole%20and%20lidocaine:%20Three%20sodium%20channel%20blockers,%20with%20different%20mechanisms%20of%20action,%20decrease%20hippocampal%20epileptiform%20activity&rft.jtitle=Neuropharmacology&rft.au=Diao,%20Lihong&rft.date=2013-10-01&rft.volume=73&rft.spage=48&rft.epage=55&rft.pages=48-55&rft.issn=0028-3908&rft.eissn=1873-7064&rft_id=info:doi/10.1016/j.neuropharm.2013.04.057&rft_dat=%3Cproquest_pubme%3E1500800805%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-6db4e4e54f3eb61d5347772e74696f27d1b89f8535f30569023a08c416b74a853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1430854970&rft_id=info:pmid/23707481&rfr_iscdi=true