Loading…

ERK signaling couples nutrient status to antiviral defense in the insect gut

A unique facet of arthropod-borne virus (arbovirus) infection is that the pathogens are orally acquired by an insect vector during the taking of a blood meal, which directly links nutrient acquisition and pathogen challenge. We show that the nutrient responsive ERK pathway is both induced by and res...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-09, Vol.110 (37), p.15025-15030
Main Authors: Xu, Jie, Hopkins, Kaycie, Sabin, Leah, Yasunaga, Ari, Subramanian, Harry, Lamborn, Ian, Gordesky-Gold, Beth, Cherry, Sara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A unique facet of arthropod-borne virus (arbovirus) infection is that the pathogens are orally acquired by an insect vector during the taking of a blood meal, which directly links nutrient acquisition and pathogen challenge. We show that the nutrient responsive ERK pathway is both induced by and restricts disparate arboviruses in Drosophila intestines, providing insight into the molecular determinants of the antiviral “midgut barrier.” Wild-type flies are refractory to oral infection by arboviruses, including Sindbis virus and vesicular stomatitis virus, but this innate restriction can be overcome chemically by oral administration of an ERK pathway inhibitor or genetically via the specific loss of ERK in Drosophila intestinal epithelial cells. In addition, we found that vertebrate insulin, which activates ERK in the mosquito gut during a blood meal, restricts viral infection in Drosophila cells and against viral invasion of the insect gut epithelium. We find that ERK’s antiviral signaling activity is likely conserved in Aedes mosquitoes, because genetic or pharmacologic manipulation of the ERK pathway affects viral infection of mosquito cells. These studies demonstrate that ERK signaling has a broadly antiviral role in insects and suggest that insects take advantage of cross-species signals in the meal to trigger antiviral immunity.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1303193110