Loading…

Synthesis of a Novel Thiazolidinedione and Evaluation of Its Modulatory Effect on IFN-γ, IL-6, IL-17A, and IL-22 Production in PBMCs from Rheumatoid Arthritis Patients

Rheumatoid arthritis (RA) is an autoimmune disease frequently characterized by chronic synovitis of multiple joints. The pathogenesis of RA is complex and involves many proinflammatory cytokines as Th17 related ones. PPARγ is a nuclear receptor activator that represses proinflammatory gene expressio...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2013-01, Vol.2013 (2013), p.1-8
Main Authors: Pitta, Ivan da Rocha, Pitta, Maira Galdino da Rocha, de Lima, Maria do Carmo Alves, Gonçalves, Sayonara Maria Calado, Oliveira, Priscilla Stela Santana de, Pitta, Marina Galdino da Rocha, Pereira, Michelly Cristiny, Cavalcanti, Mariana Brayner, de Melo Rego, Moacyr Jesus Barreto, da Rocha Junior, Laurindo Ferreira, Duarte, Angela Luzia Branco Pinto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rheumatoid arthritis (RA) is an autoimmune disease frequently characterized by chronic synovitis of multiple joints. The pathogenesis of RA is complex and involves many proinflammatory cytokines as Th17 related ones. PPARγ is a nuclear receptor activator that represses proinflammatory gene expression. Thus, this work aimed to synthetize a new thiazolidinedione (TZD) analogue based on a well-known anti-inflammatory and PPARγ agonist activity of this ring and evaluate its anti-inflammatory activity. After chemical structure confirmation, the compound named 5-(5-bromo-2-methoxy-benzylidene)-3-(2-nitro-benzyl)-thiazolidine-2,4-dione TM17 was submitted to cytokine releasing inhibition and PPARγ genetic modulation assays. The new compound showed no toxicity on human and murine cells, decreasing IL-6 secretion by murine splenocytes and reducing IL-17A, IL-22, and IFN-γ expression in peripheral blood mononuclear cells from patients with RA. TM17 was more efficient in modulating the mRNA expression of PPARγ than its well-used TZD agonist rosiglitazone. Surprisingly, TM17 was efficient on IL-17A and IFN-γ reduction, like the positive control methylprednisolone, and presented a better effect on IL-22 levels. In conclusion, PBMCs obtained from RA patients under TM17 treatment present a significant reduction in IL-17A, IL-22, and IFN-γ levels, but not IL-6 when compared with nontreated cells, as well as increase PPARγ mRNA expression in absence of stimulus addressing it as a promising molecule in RA treatment.
ISSN:2314-6133
2314-6141
DOI:10.1155/2013/926060