Loading…

Adiabatic inversion pulses for myocardial T1 mapping

Purpose To evaluate the error in T1 estimates using inversion‐recovery‐based T1 mapping due to imperfect inversion and to perform a systematic study of adiabatic inversion pulse designs in order to maximize inversion efficiency for values of transverse relaxation (T2) in the myocardium subject to a...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2014-04, Vol.71 (4), p.1428-1434
Main Authors: Kellman, Peter, Herzka, Daniel A., Hansen, Michael Schacht
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose To evaluate the error in T1 estimates using inversion‐recovery‐based T1 mapping due to imperfect inversion and to perform a systematic study of adiabatic inversion pulse designs in order to maximize inversion efficiency for values of transverse relaxation (T2) in the myocardium subject to a peak power constraint. Methods The inversion factor for hyperbolic secant and tangent/hyperbolic tangent adiabatic full passage waveforms was calculated using Bloch equations. A brute‐force search was conducted for design parameters: pulse duration, frequency range, shape parameters, and peak amplitude. A design was selected that maximized the inversion factor over a specified range of amplitude and off‐resonance and validated using phantom measurements. Empirical correction for imperfect inversion was performed. Results The tangent/hyperbolic tangent adiabatic pulse was found to outperform hyperbolic secant designs and achieve an inversion factor of 0.96 within ±150 Hz over 25% amplitude range with 14.7 µT peak amplitude. T1 mapping errors of the selected design due to imperfect inversion was ∼4% and could be corrected to
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.24793