Loading…
Adiabatic inversion pulses for myocardial T1 mapping
Purpose To evaluate the error in T1 estimates using inversion‐recovery‐based T1 mapping due to imperfect inversion and to perform a systematic study of adiabatic inversion pulse designs in order to maximize inversion efficiency for values of transverse relaxation (T2) in the myocardium subject to a...
Saved in:
Published in: | Magnetic resonance in medicine 2014-04, Vol.71 (4), p.1428-1434 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
To evaluate the error in T1 estimates using inversion‐recovery‐based T1 mapping due to imperfect inversion and to perform a systematic study of adiabatic inversion pulse designs in order to maximize inversion efficiency for values of transverse relaxation (T2) in the myocardium subject to a peak power constraint.
Methods
The inversion factor for hyperbolic secant and tangent/hyperbolic tangent adiabatic full passage waveforms was calculated using Bloch equations. A brute‐force search was conducted for design parameters: pulse duration, frequency range, shape parameters, and peak amplitude. A design was selected that maximized the inversion factor over a specified range of amplitude and off‐resonance and validated using phantom measurements. Empirical correction for imperfect inversion was performed.
Results
The tangent/hyperbolic tangent adiabatic pulse was found to outperform hyperbolic secant designs and achieve an inversion factor of 0.96 within ±150 Hz over 25% amplitude range with 14.7 µT peak amplitude. T1 mapping errors of the selected design due to imperfect inversion was ∼4% and could be corrected to |
---|---|
ISSN: | 0740-3194 1522-2594 |
DOI: | 10.1002/mrm.24793 |