Loading…

Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease

Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT...

Full description

Saved in:
Bibliographic Details
Published in:Molecular therapy 2013-09, Vol.21 (9), p.1661-1667
Main Authors: Falk, Darin J, Mah, Cathryn S, Soustek, Meghan S, Lee, Kun-Ze, ElMallah, Mai K, Cloutier, Denise A, Fuller, David D, Byrne, Barry J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3
cites cdi_FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3
container_end_page 1667
container_issue 9
container_start_page 1661
container_title Molecular therapy
container_volume 21
creator Falk, Darin J
Mah, Cathryn S
Soustek, Meghan S
Lee, Kun-Ze
ElMallah, Mai K
Cloutier, Denise A
Fuller, David D
Byrne, Barry J
description Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood–brain barrier and progressive CNS pathology ensues. We tested the hypothesis that intrapleural administration of recombinant adeno-associated virus (rAAV9)-GAA driven by a cytomegalovirus (CMV) or desmin (DES) promoter would improve cardiac and respiratory function in Gaa−/− mice through a direct effect and retrograde transport to motoneurons. Cardiac magnetic resonance imaging revealed significant improvement in ejection fraction in rAAV9-GAA–treated animals. Inspiratory phrenic and diaphragm activity was examined at baseline and during hypercapnic respiratory challenge. Mice treated with AAV9 had greater relative inspiratory burst amplitude during baseline conditions when compared with Gaa−/−. In addition, efferent phrenic burst amplitude was significantly correlated with diaphragm activity in both AAV9-DES and AAV9-CMV groups but not in Gaa−/−. This is the first study to indicate improvements in cardiac, skeletal muscle, and respiratory neural output following rAAV administration in Pompe disease. These results further implicate a role for the CNS in Pompe disease pathology and the critical need to target the neurologic aspects in developing therapeutic strategies.
doi_str_mv 10.1038/mt.2013.96
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3776643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001616320007</els_id><sourcerecordid>1430853877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3</originalsourceid><addsrcrecordid>eNqF0cuKFDEUBuAgDs5FNz6AFLgZBrrNpXLbCE3raMOgLtRtSCWnNUNVUiZVDfP2pu2xURlwlUPy5ScnB6HnBC8JZurVMC0pJmypxSN0RjjlC4xp-_hYE3GKzku5rRXhWjxBp5RJRrXGZ8ht4pTt2MOcbd-s_BBiKHVnCik2adusVl91sxnGnHZQmg8HZqNv1jb7kDKUMVSd8l1zPUf361qIzac0jNC8CQVsgafoZGv7As_u1wv05frt5_X7xc3Hd5v16mbhOMfTwvtWW-Upo3RrwUmqWwZdJxlxnnjeSqWwY1ZoQTtNnJXcK95h5yq0Ulp2gV4fcse5G8A72LfWmzGHweY7k2wwf5_E8N18SzvDpBSiZTXg8j4gpx8zlMkMoTjoexshzcUQIRnTmAn6f9oyrDhTUlb68h96m-Yc608YIjVRSnMuqro6KJdTKRm2x3cTbPZjNsNk9mM2eo9f_Nnpkf6eawXtAUD9712AbIoLEB34kMFNxqfwUO5PE_a1bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791889556</pqid></control><display><type>article</type><title>Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease</title><source>PubMed Central</source><creator>Falk, Darin J ; Mah, Cathryn S ; Soustek, Meghan S ; Lee, Kun-Ze ; ElMallah, Mai K ; Cloutier, Denise A ; Fuller, David D ; Byrne, Barry J</creator><creatorcontrib>Falk, Darin J ; Mah, Cathryn S ; Soustek, Meghan S ; Lee, Kun-Ze ; ElMallah, Mai K ; Cloutier, Denise A ; Fuller, David D ; Byrne, Barry J</creatorcontrib><description>Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood–brain barrier and progressive CNS pathology ensues. We tested the hypothesis that intrapleural administration of recombinant adeno-associated virus (rAAV9)-GAA driven by a cytomegalovirus (CMV) or desmin (DES) promoter would improve cardiac and respiratory function in Gaa−/− mice through a direct effect and retrograde transport to motoneurons. Cardiac magnetic resonance imaging revealed significant improvement in ejection fraction in rAAV9-GAA–treated animals. Inspiratory phrenic and diaphragm activity was examined at baseline and during hypercapnic respiratory challenge. Mice treated with AAV9 had greater relative inspiratory burst amplitude during baseline conditions when compared with Gaa−/−. In addition, efferent phrenic burst amplitude was significantly correlated with diaphragm activity in both AAV9-DES and AAV9-CMV groups but not in Gaa−/−. This is the first study to indicate improvements in cardiac, skeletal muscle, and respiratory neural output following rAAV administration in Pompe disease. These results further implicate a role for the CNS in Pompe disease pathology and the critical need to target the neurologic aspects in developing therapeutic strategies.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1038/mt.2013.96</identifier><identifier>PMID: 23732990</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acids ; Adeno-associated virus ; alpha-Glucosidases - genetics ; alpha-Glucosidases - metabolism ; Animals ; Cytomegalovirus ; Dependovirus - genetics ; Dependovirus - metabolism ; Diaphragm (Anatomy) ; Diaphragm - physiology ; Disease Models, Animal ; Enzymes ; Genetic Vectors ; Genomes ; Glycogen Storage Disease Type II - genetics ; Glycogen Storage Disease Type II - physiopathology ; Glycogen Storage Disease Type II - therapy ; Heart - physiology ; Humans ; Mice ; Muscle, Skeletal - pathology ; Muscle, Skeletal - physiology ; Musculoskeletal system ; Myocardium - metabolism ; Myocardium - pathology ; Nervous system ; Neuromuscular diseases ; Original ; Pathology ; Pathophysiology ; Phrenic Nerve - physiology ; Pleura ; Random Allocation ; Respiratory failure ; Respiratory Muscles - physiology ; Spinal cord ; Spinal Cord - metabolism ; Transduction, Genetic ; Ventilation</subject><ispartof>Molecular therapy, 2013-09, Vol.21 (9), p.1661-1667</ispartof><rights>2013 American Society of Gene &amp; Cell Therapy</rights><rights>Copyright Nature Publishing Group Sep 2013</rights><rights>Copyright © 2013 The American Society of Gene &amp; Cell Therapy 2013 The American Society of Gene &amp; Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3</citedby><cites>FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776643/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776643/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23732990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falk, Darin J</creatorcontrib><creatorcontrib>Mah, Cathryn S</creatorcontrib><creatorcontrib>Soustek, Meghan S</creatorcontrib><creatorcontrib>Lee, Kun-Ze</creatorcontrib><creatorcontrib>ElMallah, Mai K</creatorcontrib><creatorcontrib>Cloutier, Denise A</creatorcontrib><creatorcontrib>Fuller, David D</creatorcontrib><creatorcontrib>Byrne, Barry J</creatorcontrib><title>Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood–brain barrier and progressive CNS pathology ensues. We tested the hypothesis that intrapleural administration of recombinant adeno-associated virus (rAAV9)-GAA driven by a cytomegalovirus (CMV) or desmin (DES) promoter would improve cardiac and respiratory function in Gaa−/− mice through a direct effect and retrograde transport to motoneurons. Cardiac magnetic resonance imaging revealed significant improvement in ejection fraction in rAAV9-GAA–treated animals. Inspiratory phrenic and diaphragm activity was examined at baseline and during hypercapnic respiratory challenge. Mice treated with AAV9 had greater relative inspiratory burst amplitude during baseline conditions when compared with Gaa−/−. In addition, efferent phrenic burst amplitude was significantly correlated with diaphragm activity in both AAV9-DES and AAV9-CMV groups but not in Gaa−/−. This is the first study to indicate improvements in cardiac, skeletal muscle, and respiratory neural output following rAAV administration in Pompe disease. These results further implicate a role for the CNS in Pompe disease pathology and the critical need to target the neurologic aspects in developing therapeutic strategies.</description><subject>Acids</subject><subject>Adeno-associated virus</subject><subject>alpha-Glucosidases - genetics</subject><subject>alpha-Glucosidases - metabolism</subject><subject>Animals</subject><subject>Cytomegalovirus</subject><subject>Dependovirus - genetics</subject><subject>Dependovirus - metabolism</subject><subject>Diaphragm (Anatomy)</subject><subject>Diaphragm - physiology</subject><subject>Disease Models, Animal</subject><subject>Enzymes</subject><subject>Genetic Vectors</subject><subject>Genomes</subject><subject>Glycogen Storage Disease Type II - genetics</subject><subject>Glycogen Storage Disease Type II - physiopathology</subject><subject>Glycogen Storage Disease Type II - therapy</subject><subject>Heart - physiology</subject><subject>Humans</subject><subject>Mice</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Musculoskeletal system</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Nervous system</subject><subject>Neuromuscular diseases</subject><subject>Original</subject><subject>Pathology</subject><subject>Pathophysiology</subject><subject>Phrenic Nerve - physiology</subject><subject>Pleura</subject><subject>Random Allocation</subject><subject>Respiratory failure</subject><subject>Respiratory Muscles - physiology</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><subject>Transduction, Genetic</subject><subject>Ventilation</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0cuKFDEUBuAgDs5FNz6AFLgZBrrNpXLbCE3raMOgLtRtSCWnNUNVUiZVDfP2pu2xURlwlUPy5ScnB6HnBC8JZurVMC0pJmypxSN0RjjlC4xp-_hYE3GKzku5rRXhWjxBp5RJRrXGZ8ht4pTt2MOcbd-s_BBiKHVnCik2adusVl91sxnGnHZQmg8HZqNv1jb7kDKUMVSd8l1zPUf361qIzac0jNC8CQVsgafoZGv7As_u1wv05frt5_X7xc3Hd5v16mbhOMfTwvtWW-Upo3RrwUmqWwZdJxlxnnjeSqWwY1ZoQTtNnJXcK95h5yq0Ulp2gV4fcse5G8A72LfWmzGHweY7k2wwf5_E8N18SzvDpBSiZTXg8j4gpx8zlMkMoTjoexshzcUQIRnTmAn6f9oyrDhTUlb68h96m-Yc608YIjVRSnMuqro6KJdTKRm2x3cTbPZjNsNk9mM2eo9f_Nnpkf6eawXtAUD9712AbIoLEB34kMFNxqfwUO5PE_a1bg</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Falk, Darin J</creator><creator>Mah, Cathryn S</creator><creator>Soustek, Meghan S</creator><creator>Lee, Kun-Ze</creator><creator>ElMallah, Mai K</creator><creator>Cloutier, Denise A</creator><creator>Fuller, David D</creator><creator>Byrne, Barry J</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20130901</creationdate><title>Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease</title><author>Falk, Darin J ; Mah, Cathryn S ; Soustek, Meghan S ; Lee, Kun-Ze ; ElMallah, Mai K ; Cloutier, Denise A ; Fuller, David D ; Byrne, Barry J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids</topic><topic>Adeno-associated virus</topic><topic>alpha-Glucosidases - genetics</topic><topic>alpha-Glucosidases - metabolism</topic><topic>Animals</topic><topic>Cytomegalovirus</topic><topic>Dependovirus - genetics</topic><topic>Dependovirus - metabolism</topic><topic>Diaphragm (Anatomy)</topic><topic>Diaphragm - physiology</topic><topic>Disease Models, Animal</topic><topic>Enzymes</topic><topic>Genetic Vectors</topic><topic>Genomes</topic><topic>Glycogen Storage Disease Type II - genetics</topic><topic>Glycogen Storage Disease Type II - physiopathology</topic><topic>Glycogen Storage Disease Type II - therapy</topic><topic>Heart - physiology</topic><topic>Humans</topic><topic>Mice</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Musculoskeletal system</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Nervous system</topic><topic>Neuromuscular diseases</topic><topic>Original</topic><topic>Pathology</topic><topic>Pathophysiology</topic><topic>Phrenic Nerve - physiology</topic><topic>Pleura</topic><topic>Random Allocation</topic><topic>Respiratory failure</topic><topic>Respiratory Muscles - physiology</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><topic>Transduction, Genetic</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falk, Darin J</creatorcontrib><creatorcontrib>Mah, Cathryn S</creatorcontrib><creatorcontrib>Soustek, Meghan S</creatorcontrib><creatorcontrib>Lee, Kun-Ze</creatorcontrib><creatorcontrib>ElMallah, Mai K</creatorcontrib><creatorcontrib>Cloutier, Denise A</creatorcontrib><creatorcontrib>Fuller, David D</creatorcontrib><creatorcontrib>Byrne, Barry J</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falk, Darin J</au><au>Mah, Cathryn S</au><au>Soustek, Meghan S</au><au>Lee, Kun-Ze</au><au>ElMallah, Mai K</au><au>Cloutier, Denise A</au><au>Fuller, David D</au><au>Byrne, Barry J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>21</volume><issue>9</issue><spage>1661</spage><epage>1667</epage><pages>1661-1667</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood–brain barrier and progressive CNS pathology ensues. We tested the hypothesis that intrapleural administration of recombinant adeno-associated virus (rAAV9)-GAA driven by a cytomegalovirus (CMV) or desmin (DES) promoter would improve cardiac and respiratory function in Gaa−/− mice through a direct effect and retrograde transport to motoneurons. Cardiac magnetic resonance imaging revealed significant improvement in ejection fraction in rAAV9-GAA–treated animals. Inspiratory phrenic and diaphragm activity was examined at baseline and during hypercapnic respiratory challenge. Mice treated with AAV9 had greater relative inspiratory burst amplitude during baseline conditions when compared with Gaa−/−. In addition, efferent phrenic burst amplitude was significantly correlated with diaphragm activity in both AAV9-DES and AAV9-CMV groups but not in Gaa−/−. This is the first study to indicate improvements in cardiac, skeletal muscle, and respiratory neural output following rAAV administration in Pompe disease. These results further implicate a role for the CNS in Pompe disease pathology and the critical need to target the neurologic aspects in developing therapeutic strategies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23732990</pmid><doi>10.1038/mt.2013.96</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2013-09, Vol.21 (9), p.1661-1667
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3776643
source PubMed Central
subjects Acids
Adeno-associated virus
alpha-Glucosidases - genetics
alpha-Glucosidases - metabolism
Animals
Cytomegalovirus
Dependovirus - genetics
Dependovirus - metabolism
Diaphragm (Anatomy)
Diaphragm - physiology
Disease Models, Animal
Enzymes
Genetic Vectors
Genomes
Glycogen Storage Disease Type II - genetics
Glycogen Storage Disease Type II - physiopathology
Glycogen Storage Disease Type II - therapy
Heart - physiology
Humans
Mice
Muscle, Skeletal - pathology
Muscle, Skeletal - physiology
Musculoskeletal system
Myocardium - metabolism
Myocardium - pathology
Nervous system
Neuromuscular diseases
Original
Pathology
Pathophysiology
Phrenic Nerve - physiology
Pleura
Random Allocation
Respiratory failure
Respiratory Muscles - physiology
Spinal cord
Spinal Cord - metabolism
Transduction, Genetic
Ventilation
title Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrapleural%20Administration%20of%20AAV9%20Improves%20Neural%20and%20Cardiorespiratory%20Function%20in%20Pompe%20Disease&rft.jtitle=Molecular%20therapy&rft.au=Falk,%20Darin%20J&rft.date=2013-09-01&rft.volume=21&rft.issue=9&rft.spage=1661&rft.epage=1667&rft.pages=1661-1667&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1038/mt.2013.96&rft_dat=%3Cproquest_pubme%3E1430853877%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1791889556&rft_id=info:pmid/23732990&rfr_iscdi=true