Loading…
Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease
Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT...
Saved in:
Published in: | Molecular therapy 2013-09, Vol.21 (9), p.1661-1667 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3 |
container_end_page | 1667 |
container_issue | 9 |
container_start_page | 1661 |
container_title | Molecular therapy |
container_volume | 21 |
creator | Falk, Darin J Mah, Cathryn S Soustek, Meghan S Lee, Kun-Ze ElMallah, Mai K Cloutier, Denise A Fuller, David D Byrne, Barry J |
description | Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood–brain barrier and progressive CNS pathology ensues. We tested the hypothesis that intrapleural administration of recombinant adeno-associated virus (rAAV9)-GAA driven by a cytomegalovirus (CMV) or desmin (DES) promoter would improve cardiac and respiratory function in Gaa−/− mice through a direct effect and retrograde transport to motoneurons. Cardiac magnetic resonance imaging revealed significant improvement in ejection fraction in rAAV9-GAA–treated animals. Inspiratory phrenic and diaphragm activity was examined at baseline and during hypercapnic respiratory challenge. Mice treated with AAV9 had greater relative inspiratory burst amplitude during baseline conditions when compared with Gaa−/−. In addition, efferent phrenic burst amplitude was significantly correlated with diaphragm activity in both AAV9-DES and AAV9-CMV groups but not in Gaa−/−. This is the first study to indicate improvements in cardiac, skeletal muscle, and respiratory neural output following rAAV administration in Pompe disease. These results further implicate a role for the CNS in Pompe disease pathology and the critical need to target the neurologic aspects in developing therapeutic strategies. |
doi_str_mv | 10.1038/mt.2013.96 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3776643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001616320007</els_id><sourcerecordid>1430853877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3</originalsourceid><addsrcrecordid>eNqF0cuKFDEUBuAgDs5FNz6AFLgZBrrNpXLbCE3raMOgLtRtSCWnNUNVUiZVDfP2pu2xURlwlUPy5ScnB6HnBC8JZurVMC0pJmypxSN0RjjlC4xp-_hYE3GKzku5rRXhWjxBp5RJRrXGZ8ht4pTt2MOcbd-s_BBiKHVnCik2adusVl91sxnGnHZQmg8HZqNv1jb7kDKUMVSd8l1zPUf361qIzac0jNC8CQVsgafoZGv7As_u1wv05frt5_X7xc3Hd5v16mbhOMfTwvtWW-Upo3RrwUmqWwZdJxlxnnjeSqWwY1ZoQTtNnJXcK95h5yq0Ulp2gV4fcse5G8A72LfWmzGHweY7k2wwf5_E8N18SzvDpBSiZTXg8j4gpx8zlMkMoTjoexshzcUQIRnTmAn6f9oyrDhTUlb68h96m-Yc608YIjVRSnMuqro6KJdTKRm2x3cTbPZjNsNk9mM2eo9f_Nnpkf6eawXtAUD9712AbIoLEB34kMFNxqfwUO5PE_a1bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791889556</pqid></control><display><type>article</type><title>Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease</title><source>PubMed Central</source><creator>Falk, Darin J ; Mah, Cathryn S ; Soustek, Meghan S ; Lee, Kun-Ze ; ElMallah, Mai K ; Cloutier, Denise A ; Fuller, David D ; Byrne, Barry J</creator><creatorcontrib>Falk, Darin J ; Mah, Cathryn S ; Soustek, Meghan S ; Lee, Kun-Ze ; ElMallah, Mai K ; Cloutier, Denise A ; Fuller, David D ; Byrne, Barry J</creatorcontrib><description>Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood–brain barrier and progressive CNS pathology ensues. We tested the hypothesis that intrapleural administration of recombinant adeno-associated virus (rAAV9)-GAA driven by a cytomegalovirus (CMV) or desmin (DES) promoter would improve cardiac and respiratory function in Gaa−/− mice through a direct effect and retrograde transport to motoneurons. Cardiac magnetic resonance imaging revealed significant improvement in ejection fraction in rAAV9-GAA–treated animals. Inspiratory phrenic and diaphragm activity was examined at baseline and during hypercapnic respiratory challenge. Mice treated with AAV9 had greater relative inspiratory burst amplitude during baseline conditions when compared with Gaa−/−. In addition, efferent phrenic burst amplitude was significantly correlated with diaphragm activity in both AAV9-DES and AAV9-CMV groups but not in Gaa−/−. This is the first study to indicate improvements in cardiac, skeletal muscle, and respiratory neural output following rAAV administration in Pompe disease. These results further implicate a role for the CNS in Pompe disease pathology and the critical need to target the neurologic aspects in developing therapeutic strategies.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1038/mt.2013.96</identifier><identifier>PMID: 23732990</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acids ; Adeno-associated virus ; alpha-Glucosidases - genetics ; alpha-Glucosidases - metabolism ; Animals ; Cytomegalovirus ; Dependovirus - genetics ; Dependovirus - metabolism ; Diaphragm (Anatomy) ; Diaphragm - physiology ; Disease Models, Animal ; Enzymes ; Genetic Vectors ; Genomes ; Glycogen Storage Disease Type II - genetics ; Glycogen Storage Disease Type II - physiopathology ; Glycogen Storage Disease Type II - therapy ; Heart - physiology ; Humans ; Mice ; Muscle, Skeletal - pathology ; Muscle, Skeletal - physiology ; Musculoskeletal system ; Myocardium - metabolism ; Myocardium - pathology ; Nervous system ; Neuromuscular diseases ; Original ; Pathology ; Pathophysiology ; Phrenic Nerve - physiology ; Pleura ; Random Allocation ; Respiratory failure ; Respiratory Muscles - physiology ; Spinal cord ; Spinal Cord - metabolism ; Transduction, Genetic ; Ventilation</subject><ispartof>Molecular therapy, 2013-09, Vol.21 (9), p.1661-1667</ispartof><rights>2013 American Society of Gene & Cell Therapy</rights><rights>Copyright Nature Publishing Group Sep 2013</rights><rights>Copyright © 2013 The American Society of Gene & Cell Therapy 2013 The American Society of Gene & Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3</citedby><cites>FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776643/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776643/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23732990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falk, Darin J</creatorcontrib><creatorcontrib>Mah, Cathryn S</creatorcontrib><creatorcontrib>Soustek, Meghan S</creatorcontrib><creatorcontrib>Lee, Kun-Ze</creatorcontrib><creatorcontrib>ElMallah, Mai K</creatorcontrib><creatorcontrib>Cloutier, Denise A</creatorcontrib><creatorcontrib>Fuller, David D</creatorcontrib><creatorcontrib>Byrne, Barry J</creatorcontrib><title>Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood–brain barrier and progressive CNS pathology ensues. We tested the hypothesis that intrapleural administration of recombinant adeno-associated virus (rAAV9)-GAA driven by a cytomegalovirus (CMV) or desmin (DES) promoter would improve cardiac and respiratory function in Gaa−/− mice through a direct effect and retrograde transport to motoneurons. Cardiac magnetic resonance imaging revealed significant improvement in ejection fraction in rAAV9-GAA–treated animals. Inspiratory phrenic and diaphragm activity was examined at baseline and during hypercapnic respiratory challenge. Mice treated with AAV9 had greater relative inspiratory burst amplitude during baseline conditions when compared with Gaa−/−. In addition, efferent phrenic burst amplitude was significantly correlated with diaphragm activity in both AAV9-DES and AAV9-CMV groups but not in Gaa−/−. This is the first study to indicate improvements in cardiac, skeletal muscle, and respiratory neural output following rAAV administration in Pompe disease. These results further implicate a role for the CNS in Pompe disease pathology and the critical need to target the neurologic aspects in developing therapeutic strategies.</description><subject>Acids</subject><subject>Adeno-associated virus</subject><subject>alpha-Glucosidases - genetics</subject><subject>alpha-Glucosidases - metabolism</subject><subject>Animals</subject><subject>Cytomegalovirus</subject><subject>Dependovirus - genetics</subject><subject>Dependovirus - metabolism</subject><subject>Diaphragm (Anatomy)</subject><subject>Diaphragm - physiology</subject><subject>Disease Models, Animal</subject><subject>Enzymes</subject><subject>Genetic Vectors</subject><subject>Genomes</subject><subject>Glycogen Storage Disease Type II - genetics</subject><subject>Glycogen Storage Disease Type II - physiopathology</subject><subject>Glycogen Storage Disease Type II - therapy</subject><subject>Heart - physiology</subject><subject>Humans</subject><subject>Mice</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Musculoskeletal system</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Nervous system</subject><subject>Neuromuscular diseases</subject><subject>Original</subject><subject>Pathology</subject><subject>Pathophysiology</subject><subject>Phrenic Nerve - physiology</subject><subject>Pleura</subject><subject>Random Allocation</subject><subject>Respiratory failure</subject><subject>Respiratory Muscles - physiology</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><subject>Transduction, Genetic</subject><subject>Ventilation</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0cuKFDEUBuAgDs5FNz6AFLgZBrrNpXLbCE3raMOgLtRtSCWnNUNVUiZVDfP2pu2xURlwlUPy5ScnB6HnBC8JZurVMC0pJmypxSN0RjjlC4xp-_hYE3GKzku5rRXhWjxBp5RJRrXGZ8ht4pTt2MOcbd-s_BBiKHVnCik2adusVl91sxnGnHZQmg8HZqNv1jb7kDKUMVSd8l1zPUf361qIzac0jNC8CQVsgafoZGv7As_u1wv05frt5_X7xc3Hd5v16mbhOMfTwvtWW-Upo3RrwUmqWwZdJxlxnnjeSqWwY1ZoQTtNnJXcK95h5yq0Ulp2gV4fcse5G8A72LfWmzGHweY7k2wwf5_E8N18SzvDpBSiZTXg8j4gpx8zlMkMoTjoexshzcUQIRnTmAn6f9oyrDhTUlb68h96m-Yc608YIjVRSnMuqro6KJdTKRm2x3cTbPZjNsNk9mM2eo9f_Nnpkf6eawXtAUD9712AbIoLEB34kMFNxqfwUO5PE_a1bg</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Falk, Darin J</creator><creator>Mah, Cathryn S</creator><creator>Soustek, Meghan S</creator><creator>Lee, Kun-Ze</creator><creator>ElMallah, Mai K</creator><creator>Cloutier, Denise A</creator><creator>Fuller, David D</creator><creator>Byrne, Barry J</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20130901</creationdate><title>Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease</title><author>Falk, Darin J ; Mah, Cathryn S ; Soustek, Meghan S ; Lee, Kun-Ze ; ElMallah, Mai K ; Cloutier, Denise A ; Fuller, David D ; Byrne, Barry J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids</topic><topic>Adeno-associated virus</topic><topic>alpha-Glucosidases - genetics</topic><topic>alpha-Glucosidases - metabolism</topic><topic>Animals</topic><topic>Cytomegalovirus</topic><topic>Dependovirus - genetics</topic><topic>Dependovirus - metabolism</topic><topic>Diaphragm (Anatomy)</topic><topic>Diaphragm - physiology</topic><topic>Disease Models, Animal</topic><topic>Enzymes</topic><topic>Genetic Vectors</topic><topic>Genomes</topic><topic>Glycogen Storage Disease Type II - genetics</topic><topic>Glycogen Storage Disease Type II - physiopathology</topic><topic>Glycogen Storage Disease Type II - therapy</topic><topic>Heart - physiology</topic><topic>Humans</topic><topic>Mice</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Musculoskeletal system</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Nervous system</topic><topic>Neuromuscular diseases</topic><topic>Original</topic><topic>Pathology</topic><topic>Pathophysiology</topic><topic>Phrenic Nerve - physiology</topic><topic>Pleura</topic><topic>Random Allocation</topic><topic>Respiratory failure</topic><topic>Respiratory Muscles - physiology</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><topic>Transduction, Genetic</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falk, Darin J</creatorcontrib><creatorcontrib>Mah, Cathryn S</creatorcontrib><creatorcontrib>Soustek, Meghan S</creatorcontrib><creatorcontrib>Lee, Kun-Ze</creatorcontrib><creatorcontrib>ElMallah, Mai K</creatorcontrib><creatorcontrib>Cloutier, Denise A</creatorcontrib><creatorcontrib>Fuller, David D</creatorcontrib><creatorcontrib>Byrne, Barry J</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falk, Darin J</au><au>Mah, Cathryn S</au><au>Soustek, Meghan S</au><au>Lee, Kun-Ze</au><au>ElMallah, Mai K</au><au>Cloutier, Denise A</au><au>Fuller, David D</au><au>Byrne, Barry J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>21</volume><issue>9</issue><spage>1661</spage><epage>1667</epage><pages>1661-1667</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood–brain barrier and progressive CNS pathology ensues. We tested the hypothesis that intrapleural administration of recombinant adeno-associated virus (rAAV9)-GAA driven by a cytomegalovirus (CMV) or desmin (DES) promoter would improve cardiac and respiratory function in Gaa−/− mice through a direct effect and retrograde transport to motoneurons. Cardiac magnetic resonance imaging revealed significant improvement in ejection fraction in rAAV9-GAA–treated animals. Inspiratory phrenic and diaphragm activity was examined at baseline and during hypercapnic respiratory challenge. Mice treated with AAV9 had greater relative inspiratory burst amplitude during baseline conditions when compared with Gaa−/−. In addition, efferent phrenic burst amplitude was significantly correlated with diaphragm activity in both AAV9-DES and AAV9-CMV groups but not in Gaa−/−. This is the first study to indicate improvements in cardiac, skeletal muscle, and respiratory neural output following rAAV administration in Pompe disease. These results further implicate a role for the CNS in Pompe disease pathology and the critical need to target the neurologic aspects in developing therapeutic strategies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23732990</pmid><doi>10.1038/mt.2013.96</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2013-09, Vol.21 (9), p.1661-1667 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3776643 |
source | PubMed Central |
subjects | Acids Adeno-associated virus alpha-Glucosidases - genetics alpha-Glucosidases - metabolism Animals Cytomegalovirus Dependovirus - genetics Dependovirus - metabolism Diaphragm (Anatomy) Diaphragm - physiology Disease Models, Animal Enzymes Genetic Vectors Genomes Glycogen Storage Disease Type II - genetics Glycogen Storage Disease Type II - physiopathology Glycogen Storage Disease Type II - therapy Heart - physiology Humans Mice Muscle, Skeletal - pathology Muscle, Skeletal - physiology Musculoskeletal system Myocardium - metabolism Myocardium - pathology Nervous system Neuromuscular diseases Original Pathology Pathophysiology Phrenic Nerve - physiology Pleura Random Allocation Respiratory failure Respiratory Muscles - physiology Spinal cord Spinal Cord - metabolism Transduction, Genetic Ventilation |
title | Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrapleural%20Administration%20of%20AAV9%20Improves%20Neural%20and%20Cardiorespiratory%20Function%20in%20Pompe%20Disease&rft.jtitle=Molecular%20therapy&rft.au=Falk,%20Darin%20J&rft.date=2013-09-01&rft.volume=21&rft.issue=9&rft.spage=1661&rft.epage=1667&rft.pages=1661-1667&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1038/mt.2013.96&rft_dat=%3Cproquest_pubme%3E1430853877%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-dd49a8d2322faec72943ebb731cd1d547880c3a6962b91ca75d85b0cc294a77a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1791889556&rft_id=info:pmid/23732990&rfr_iscdi=true |