Loading…
Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics
Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and...
Saved in:
Published in: | Journal of neuroscience methods 2009-03, Vol.177 (2), p.294-302 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and practical methods for studying LGICs in vitro under synaptically relevant conditions are unavailable. Here, we describe a novel microfluidic approach to solution switching that allows for precise temporal control over the neurotransmitter transient while substantially increasing experimental throughput, flexibility, reproducibility, and cost-effectiveness. When this system was used to apply ultra-brief (∼400μs) GABA pulses to recombinant GABAA receptors, members of the cys-loop family of LGICs, the resulting currents resembled hippocampal inhibitory post-synaptic currents (IPSCs) and differed from currents evoked by longer, conventional pulses, illustrating the importance of evaluating LGICs on a synaptic timescale. This methodology should therefore allow the effects of disease-causing mutations and allosteric modulators to be evaluated in vitro under physiologically relevant conditions. |
---|---|
ISSN: | 0165-0270 1872-678X |
DOI: | 10.1016/j.jneumeth.2008.10.014 |