Loading…

TNF-α Induces Phenotypic Modulation in Cerebral Vascular Smooth Muscle Cells: Implications for Cerebral Aneurysm Pathology

Little is known about vascular smooth muscle cell (SMC) phenotypic modulation in the cerebral circulation or pathogenesis of intracranial aneurysms. Tumor necrosis factor-alpha (TNF-α) has been associated with aneurysms, but potential mechanisms are unclear. Cultured rat cerebral SMCs overexpressing...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 2013-10, Vol.33 (10), p.1564-1573
Main Authors: Ali, Muhammad S, Starke, Robert M, Jabbour, Pascal M, Tjoumakaris, Stavropoula I, Gonzalez, L Fernando, Rosenwasser, Robert H, Owens, Gary K, Koch, Walter J, Greig, Nigel H, Dumont, Aaron S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-f023b8d61107e4b8a9f342eb5caf80dcb45cba3a07c5b7e4d1f4c04239c622b43
cites cdi_FETCH-LOGICAL-c389t-f023b8d61107e4b8a9f342eb5caf80dcb45cba3a07c5b7e4d1f4c04239c622b43
container_end_page 1573
container_issue 10
container_start_page 1564
container_title Journal of cerebral blood flow and metabolism
container_volume 33
creator Ali, Muhammad S
Starke, Robert M
Jabbour, Pascal M
Tjoumakaris, Stavropoula I
Gonzalez, L Fernando
Rosenwasser, Robert H
Owens, Gary K
Koch, Walter J
Greig, Nigel H
Dumont, Aaron S
description Little is known about vascular smooth muscle cell (SMC) phenotypic modulation in the cerebral circulation or pathogenesis of intracranial aneurysms. Tumor necrosis factor-alpha (TNF-α) has been associated with aneurysms, but potential mechanisms are unclear. Cultured rat cerebral SMCs overexpressing myocardin induced expression of key SMC contractile genes (SM-α-actin, SM-22α, smooth muscle myosin heavy chain), while dominant-negative cells suppressed expression. Tumor necrosis factor-alpha treatment inhibited this contractile phenotype and induced pro-inflammatory/matrix-remodeling genes (monocyte chemoattractant protein-1, matrix metalloproteinase-3, matrix metalloproteinase-9, vascular cell adhesion molecule-1, interleukin-1 beta). Tumor necrosis factor-alpha increased expression of KLF4, a known regulator of SMC differentiation. Kruppel-like transcription factor 4 (KLF4) small interfering RNA abrogated TNF-α activation of inflammatory genes and suppression of contractile genes. These mechanisms were confirmed in vivo after exposure of rat carotid arteries to TNF-α and early on in a model of cerebral aneurysm formation. Treatment with the synthesized TNF-α inhibitor 3,6-dithiothalidomide reversed pathologic vessel wall alterations after induced hypertension and hemodynamic stress. Chromatin immunoprecipitation assays in vivo and in vitro demonstrated that TNF-α promotes epigenetic changes through KLF4-dependent alterations in promoter regions of myocardin, SMCs, and inflammatory genes. In conclusion, TNF-α induces phenotypic modulation of cerebral SMCs through myocardin and KLF4-regulated pathways. These results demonstrate a novel role for TNF-α in promoting a pro-inflammatory/matrix-remodeling phenotype, which has important implications for the mechanisms behind intracranial aneurysm formation.
doi_str_mv 10.1038/jcbfm.2013.109
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3790924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1038_jcbfm.2013.109</sage_id><sourcerecordid>1443371985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f023b8d61107e4b8a9f342eb5caf80dcb45cba3a07c5b7e4d1f4c04239c622b43</originalsourceid><addsrcrecordid>eNp1kctq3DAUhkVJaCZJt1kGLQPFU91sS10UwpC0A7lBLnQnJFme8WBLU8kODHmqvkieKZpMLu0iK3F0vv8_R_oBOMBojBHl3xZG192YIExTLT6BEc5zkZUIF1tghEiJs6Lkv3fAbowLhBCnef4Z7BDKC0RLNgIPNxen2eNfOHXVYGyEV3PrfL9aNgae-2poVd94BxsHJzZYHVQL71Q06T7A6877fg7Ph2ham_ptG7_DabdsG_OsirD24V137OwQVrGDV6qf-9bPVvtgu1ZttF9ezj1we3pyM_mVnV3-nE6OzzJDueizGhGqeVVgjErLNFeipoxYnRtVc1QZzXKjFVWoNLlORIVrZhAjVJiCEM3oHvix8V0OurOVsa5PC8llaDoVVtKrRv7fcc1czvy9pKVAgqwNjl4Mgv8z2NjLrokmPVg564coMWOUlljwPKHjDWqCjzHY-m0MRnKdmHxOTK4TS7VIgsN_l3vDXyNKwNcNENXMyoUfgkuf9ZHdE0bypFU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443371985</pqid></control><display><type>article</type><title>TNF-α Induces Phenotypic Modulation in Cerebral Vascular Smooth Muscle Cells: Implications for Cerebral Aneurysm Pathology</title><source>NCBI_PubMed Central(免费)</source><source>Sage Journals Online</source><creator>Ali, Muhammad S ; Starke, Robert M ; Jabbour, Pascal M ; Tjoumakaris, Stavropoula I ; Gonzalez, L Fernando ; Rosenwasser, Robert H ; Owens, Gary K ; Koch, Walter J ; Greig, Nigel H ; Dumont, Aaron S</creator><creatorcontrib>Ali, Muhammad S ; Starke, Robert M ; Jabbour, Pascal M ; Tjoumakaris, Stavropoula I ; Gonzalez, L Fernando ; Rosenwasser, Robert H ; Owens, Gary K ; Koch, Walter J ; Greig, Nigel H ; Dumont, Aaron S</creatorcontrib><description>Little is known about vascular smooth muscle cell (SMC) phenotypic modulation in the cerebral circulation or pathogenesis of intracranial aneurysms. Tumor necrosis factor-alpha (TNF-α) has been associated with aneurysms, but potential mechanisms are unclear. Cultured rat cerebral SMCs overexpressing myocardin induced expression of key SMC contractile genes (SM-α-actin, SM-22α, smooth muscle myosin heavy chain), while dominant-negative cells suppressed expression. Tumor necrosis factor-alpha treatment inhibited this contractile phenotype and induced pro-inflammatory/matrix-remodeling genes (monocyte chemoattractant protein-1, matrix metalloproteinase-3, matrix metalloproteinase-9, vascular cell adhesion molecule-1, interleukin-1 beta). Tumor necrosis factor-alpha increased expression of KLF4, a known regulator of SMC differentiation. Kruppel-like transcription factor 4 (KLF4) small interfering RNA abrogated TNF-α activation of inflammatory genes and suppression of contractile genes. These mechanisms were confirmed in vivo after exposure of rat carotid arteries to TNF-α and early on in a model of cerebral aneurysm formation. Treatment with the synthesized TNF-α inhibitor 3,6-dithiothalidomide reversed pathologic vessel wall alterations after induced hypertension and hemodynamic stress. Chromatin immunoprecipitation assays in vivo and in vitro demonstrated that TNF-α promotes epigenetic changes through KLF4-dependent alterations in promoter regions of myocardin, SMCs, and inflammatory genes. In conclusion, TNF-α induces phenotypic modulation of cerebral SMCs through myocardin and KLF4-regulated pathways. These results demonstrate a novel role for TNF-α in promoting a pro-inflammatory/matrix-remodeling phenotype, which has important implications for the mechanisms behind intracranial aneurysm formation.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/jcbfm.2013.109</identifier><identifier>PMID: 23860374</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animals ; Apoptosis - drug effects ; Apoptosis - genetics ; Carotid Arteries - drug effects ; Carotid Arteries - pathology ; Cell Differentiation - drug effects ; Cell Differentiation - genetics ; Cells, Cultured ; Circle of Willis - drug effects ; Circle of Willis - metabolism ; Circle of Willis - pathology ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Epigenesis, Genetic ; Genetic Markers - drug effects ; Intracranial Aneurysm - genetics ; Intracranial Aneurysm - immunology ; Intracranial Aneurysm - pathology ; Kruppel-Like Transcription Factors - genetics ; Kruppel-Like Transcription Factors - physiology ; Muscle, Smooth, Vascular - drug effects ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Nuclear Proteins - genetics ; Original ; Promoter Regions, Genetic ; Rats ; Thalidomide - analogs &amp; derivatives ; Thalidomide - pharmacology ; Trans-Activators - genetics ; Transcriptome ; Tumor Necrosis Factor-alpha - antagonists &amp; inhibitors ; Tumor Necrosis Factor-alpha - pharmacology ; Tumor Necrosis Factor-alpha - physiology</subject><ispartof>Journal of cerebral blood flow and metabolism, 2013-10, Vol.33 (10), p.1564-1573</ispartof><rights>2013 ISCBFM</rights><rights>Copyright © 2013 International Society for Cerebral Blood Flow &amp; Metabolism, Inc. 2013 International Society for Cerebral Blood Flow &amp; Metabolism, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f023b8d61107e4b8a9f342eb5caf80dcb45cba3a07c5b7e4d1f4c04239c622b43</citedby><cites>FETCH-LOGICAL-c389t-f023b8d61107e4b8a9f342eb5caf80dcb45cba3a07c5b7e4d1f4c04239c622b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790924/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790924/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791,79134</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23860374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ali, Muhammad S</creatorcontrib><creatorcontrib>Starke, Robert M</creatorcontrib><creatorcontrib>Jabbour, Pascal M</creatorcontrib><creatorcontrib>Tjoumakaris, Stavropoula I</creatorcontrib><creatorcontrib>Gonzalez, L Fernando</creatorcontrib><creatorcontrib>Rosenwasser, Robert H</creatorcontrib><creatorcontrib>Owens, Gary K</creatorcontrib><creatorcontrib>Koch, Walter J</creatorcontrib><creatorcontrib>Greig, Nigel H</creatorcontrib><creatorcontrib>Dumont, Aaron S</creatorcontrib><title>TNF-α Induces Phenotypic Modulation in Cerebral Vascular Smooth Muscle Cells: Implications for Cerebral Aneurysm Pathology</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Little is known about vascular smooth muscle cell (SMC) phenotypic modulation in the cerebral circulation or pathogenesis of intracranial aneurysms. Tumor necrosis factor-alpha (TNF-α) has been associated with aneurysms, but potential mechanisms are unclear. Cultured rat cerebral SMCs overexpressing myocardin induced expression of key SMC contractile genes (SM-α-actin, SM-22α, smooth muscle myosin heavy chain), while dominant-negative cells suppressed expression. Tumor necrosis factor-alpha treatment inhibited this contractile phenotype and induced pro-inflammatory/matrix-remodeling genes (monocyte chemoattractant protein-1, matrix metalloproteinase-3, matrix metalloproteinase-9, vascular cell adhesion molecule-1, interleukin-1 beta). Tumor necrosis factor-alpha increased expression of KLF4, a known regulator of SMC differentiation. Kruppel-like transcription factor 4 (KLF4) small interfering RNA abrogated TNF-α activation of inflammatory genes and suppression of contractile genes. These mechanisms were confirmed in vivo after exposure of rat carotid arteries to TNF-α and early on in a model of cerebral aneurysm formation. Treatment with the synthesized TNF-α inhibitor 3,6-dithiothalidomide reversed pathologic vessel wall alterations after induced hypertension and hemodynamic stress. Chromatin immunoprecipitation assays in vivo and in vitro demonstrated that TNF-α promotes epigenetic changes through KLF4-dependent alterations in promoter regions of myocardin, SMCs, and inflammatory genes. In conclusion, TNF-α induces phenotypic modulation of cerebral SMCs through myocardin and KLF4-regulated pathways. These results demonstrate a novel role for TNF-α in promoting a pro-inflammatory/matrix-remodeling phenotype, which has important implications for the mechanisms behind intracranial aneurysm formation.</description><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - genetics</subject><subject>Carotid Arteries - drug effects</subject><subject>Carotid Arteries - pathology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - genetics</subject><subject>Cells, Cultured</subject><subject>Circle of Willis - drug effects</subject><subject>Circle of Willis - metabolism</subject><subject>Circle of Willis - pathology</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Epigenesis, Genetic</subject><subject>Genetic Markers - drug effects</subject><subject>Intracranial Aneurysm - genetics</subject><subject>Intracranial Aneurysm - immunology</subject><subject>Intracranial Aneurysm - pathology</subject><subject>Kruppel-Like Transcription Factors - genetics</subject><subject>Kruppel-Like Transcription Factors - physiology</subject><subject>Muscle, Smooth, Vascular - drug effects</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Nuclear Proteins - genetics</subject><subject>Original</subject><subject>Promoter Regions, Genetic</subject><subject>Rats</subject><subject>Thalidomide - analogs &amp; derivatives</subject><subject>Thalidomide - pharmacology</subject><subject>Trans-Activators - genetics</subject><subject>Transcriptome</subject><subject>Tumor Necrosis Factor-alpha - antagonists &amp; inhibitors</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><subject>Tumor Necrosis Factor-alpha - physiology</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kctq3DAUhkVJaCZJt1kGLQPFU91sS10UwpC0A7lBLnQnJFme8WBLU8kODHmqvkieKZpMLu0iK3F0vv8_R_oBOMBojBHl3xZG192YIExTLT6BEc5zkZUIF1tghEiJs6Lkv3fAbowLhBCnef4Z7BDKC0RLNgIPNxen2eNfOHXVYGyEV3PrfL9aNgae-2poVd94BxsHJzZYHVQL71Q06T7A6877fg7Ph2ham_ptG7_DabdsG_OsirD24V137OwQVrGDV6qf-9bPVvtgu1ZttF9ezj1we3pyM_mVnV3-nE6OzzJDueizGhGqeVVgjErLNFeipoxYnRtVc1QZzXKjFVWoNLlORIVrZhAjVJiCEM3oHvix8V0OurOVsa5PC8llaDoVVtKrRv7fcc1czvy9pKVAgqwNjl4Mgv8z2NjLrokmPVg564coMWOUlljwPKHjDWqCjzHY-m0MRnKdmHxOTK4TS7VIgsN_l3vDXyNKwNcNENXMyoUfgkuf9ZHdE0bypFU</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Ali, Muhammad S</creator><creator>Starke, Robert M</creator><creator>Jabbour, Pascal M</creator><creator>Tjoumakaris, Stavropoula I</creator><creator>Gonzalez, L Fernando</creator><creator>Rosenwasser, Robert H</creator><creator>Owens, Gary K</creator><creator>Koch, Walter J</creator><creator>Greig, Nigel H</creator><creator>Dumont, Aaron S</creator><general>SAGE Publications</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>TNF-α Induces Phenotypic Modulation in Cerebral Vascular Smooth Muscle Cells: Implications for Cerebral Aneurysm Pathology</title><author>Ali, Muhammad S ; Starke, Robert M ; Jabbour, Pascal M ; Tjoumakaris, Stavropoula I ; Gonzalez, L Fernando ; Rosenwasser, Robert H ; Owens, Gary K ; Koch, Walter J ; Greig, Nigel H ; Dumont, Aaron S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f023b8d61107e4b8a9f342eb5caf80dcb45cba3a07c5b7e4d1f4c04239c622b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - genetics</topic><topic>Carotid Arteries - drug effects</topic><topic>Carotid Arteries - pathology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - genetics</topic><topic>Cells, Cultured</topic><topic>Circle of Willis - drug effects</topic><topic>Circle of Willis - metabolism</topic><topic>Circle of Willis - pathology</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Epigenesis, Genetic</topic><topic>Genetic Markers - drug effects</topic><topic>Intracranial Aneurysm - genetics</topic><topic>Intracranial Aneurysm - immunology</topic><topic>Intracranial Aneurysm - pathology</topic><topic>Kruppel-Like Transcription Factors - genetics</topic><topic>Kruppel-Like Transcription Factors - physiology</topic><topic>Muscle, Smooth, Vascular - drug effects</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Nuclear Proteins - genetics</topic><topic>Original</topic><topic>Promoter Regions, Genetic</topic><topic>Rats</topic><topic>Thalidomide - analogs &amp; derivatives</topic><topic>Thalidomide - pharmacology</topic><topic>Trans-Activators - genetics</topic><topic>Transcriptome</topic><topic>Tumor Necrosis Factor-alpha - antagonists &amp; inhibitors</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><topic>Tumor Necrosis Factor-alpha - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Muhammad S</creatorcontrib><creatorcontrib>Starke, Robert M</creatorcontrib><creatorcontrib>Jabbour, Pascal M</creatorcontrib><creatorcontrib>Tjoumakaris, Stavropoula I</creatorcontrib><creatorcontrib>Gonzalez, L Fernando</creatorcontrib><creatorcontrib>Rosenwasser, Robert H</creatorcontrib><creatorcontrib>Owens, Gary K</creatorcontrib><creatorcontrib>Koch, Walter J</creatorcontrib><creatorcontrib>Greig, Nigel H</creatorcontrib><creatorcontrib>Dumont, Aaron S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Muhammad S</au><au>Starke, Robert M</au><au>Jabbour, Pascal M</au><au>Tjoumakaris, Stavropoula I</au><au>Gonzalez, L Fernando</au><au>Rosenwasser, Robert H</au><au>Owens, Gary K</au><au>Koch, Walter J</au><au>Greig, Nigel H</au><au>Dumont, Aaron S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TNF-α Induces Phenotypic Modulation in Cerebral Vascular Smooth Muscle Cells: Implications for Cerebral Aneurysm Pathology</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>33</volume><issue>10</issue><spage>1564</spage><epage>1573</epage><pages>1564-1573</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Little is known about vascular smooth muscle cell (SMC) phenotypic modulation in the cerebral circulation or pathogenesis of intracranial aneurysms. Tumor necrosis factor-alpha (TNF-α) has been associated with aneurysms, but potential mechanisms are unclear. Cultured rat cerebral SMCs overexpressing myocardin induced expression of key SMC contractile genes (SM-α-actin, SM-22α, smooth muscle myosin heavy chain), while dominant-negative cells suppressed expression. Tumor necrosis factor-alpha treatment inhibited this contractile phenotype and induced pro-inflammatory/matrix-remodeling genes (monocyte chemoattractant protein-1, matrix metalloproteinase-3, matrix metalloproteinase-9, vascular cell adhesion molecule-1, interleukin-1 beta). Tumor necrosis factor-alpha increased expression of KLF4, a known regulator of SMC differentiation. Kruppel-like transcription factor 4 (KLF4) small interfering RNA abrogated TNF-α activation of inflammatory genes and suppression of contractile genes. These mechanisms were confirmed in vivo after exposure of rat carotid arteries to TNF-α and early on in a model of cerebral aneurysm formation. Treatment with the synthesized TNF-α inhibitor 3,6-dithiothalidomide reversed pathologic vessel wall alterations after induced hypertension and hemodynamic stress. Chromatin immunoprecipitation assays in vivo and in vitro demonstrated that TNF-α promotes epigenetic changes through KLF4-dependent alterations in promoter regions of myocardin, SMCs, and inflammatory genes. In conclusion, TNF-α induces phenotypic modulation of cerebral SMCs through myocardin and KLF4-regulated pathways. These results demonstrate a novel role for TNF-α in promoting a pro-inflammatory/matrix-remodeling phenotype, which has important implications for the mechanisms behind intracranial aneurysm formation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>23860374</pmid><doi>10.1038/jcbfm.2013.109</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2013-10, Vol.33 (10), p.1564-1573
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3790924
source NCBI_PubMed Central(免费); Sage Journals Online
subjects Animals
Apoptosis - drug effects
Apoptosis - genetics
Carotid Arteries - drug effects
Carotid Arteries - pathology
Cell Differentiation - drug effects
Cell Differentiation - genetics
Cells, Cultured
Circle of Willis - drug effects
Circle of Willis - metabolism
Circle of Willis - pathology
Disease Models, Animal
Dose-Response Relationship, Drug
Epigenesis, Genetic
Genetic Markers - drug effects
Intracranial Aneurysm - genetics
Intracranial Aneurysm - immunology
Intracranial Aneurysm - pathology
Kruppel-Like Transcription Factors - genetics
Kruppel-Like Transcription Factors - physiology
Muscle, Smooth, Vascular - drug effects
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
Nuclear Proteins - genetics
Original
Promoter Regions, Genetic
Rats
Thalidomide - analogs & derivatives
Thalidomide - pharmacology
Trans-Activators - genetics
Transcriptome
Tumor Necrosis Factor-alpha - antagonists & inhibitors
Tumor Necrosis Factor-alpha - pharmacology
Tumor Necrosis Factor-alpha - physiology
title TNF-α Induces Phenotypic Modulation in Cerebral Vascular Smooth Muscle Cells: Implications for Cerebral Aneurysm Pathology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TNF-%CE%B1%20Induces%20Phenotypic%20Modulation%20in%20Cerebral%20Vascular%20Smooth%20Muscle%20Cells:%20Implications%20for%20Cerebral%20Aneurysm%20Pathology&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Ali,%20Muhammad%20S&rft.date=2013-10-01&rft.volume=33&rft.issue=10&rft.spage=1564&rft.epage=1573&rft.pages=1564-1573&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1038/jcbfm.2013.109&rft_dat=%3Cproquest_pubme%3E1443371985%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-f023b8d61107e4b8a9f342eb5caf80dcb45cba3a07c5b7e4d1f4c04239c622b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1443371985&rft_id=info:pmid/23860374&rft_sage_id=10.1038_jcbfm.2013.109&rfr_iscdi=true