Loading…

Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis

Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis r...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2013-10, Vol.288 (41), p.29911-29922
Main Authors: Govorunova, Elena G., Sineshchekov, Oleg A., Li, Hai, Janz, Roger, Spudich, John L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73
cites cdi_FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73
container_end_page 29922
container_issue 41
container_start_page 29911
container_title The Journal of biological chemistry
container_volume 288
creator Govorunova, Elena G.
Sineshchekov, Oleg A.
Li, Hai
Janz, Roger
Spudich, John L.
description Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required. Background: Channelrhodopsins are algal phototaxis receptors used in optogenetics. Results: Channel activity and photochemistry of a new channelrhodopsin (PsChR) are characterized. Conclusion: Blue-shifted PsChR has ∼3-fold greater unitary conductance, faster recovery from excitation, and higher sodium selectivity than channelrhodopsin 2 from Chlamydomonas. Significance: These properties of PsChR facilitate further analysis of light-gated channel function and are potentially useful for optogenetics.
doi_str_mv 10.1074/jbc.M113.505495
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3795289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820488106</els_id><sourcerecordid>1443414209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73</originalsourceid><addsrcrecordid>eNp1kcFvFCEUh4nR2LX17M1w9DJbGGAHLiZ101qTNnrQpDfCMo8dGmZYgWmy_vVls7WxB7lweN_78R4fQh8oWVLS8fP7jV3eUsqWggiuxCu0oESyhgl69xotCGlpo1ohT9C7nO9JPVzRt-ikZUoJyekC5fVgkrEFkv9jio8Tjg4bfO23Q9jjS-e89TAV_CXM0OTBuwI9rj3TBCENsY-77CfsUhxxGQDfmuQnwBdha_CPYMp-jJPJOM8bG1PvXUyjz2fojTMhw_un-xT9urr8ub5ubr5__ba-uGmsEKI0lnElHRWk7ZwirndK1kK3ssw4saFSECJpRzkzHCpg6Kq1TopVy_tKuI6dos_H3N28GaG3dY9kgt4lP5q019F4_bIy-UFv44NmnRKtVDXg01NAir9nyEXX6S2EYCaIc9aUc8Ypb8kBPT-iNsWcE7jnZyjRB1W6qtIHVfqoqnZ8_He6Z_6vmwqoIwD1jx48JJ0PLiz0PoEtuo_-v-GP4dyljw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443414209</pqid></control><display><type>article</type><title>Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>Govorunova, Elena G. ; Sineshchekov, Oleg A. ; Li, Hai ; Janz, Roger ; Spudich, John L.</creator><creatorcontrib>Govorunova, Elena G. ; Sineshchekov, Oleg A. ; Li, Hai ; Janz, Roger ; Spudich, John L.</creatorcontrib><description>Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required. Background: Channelrhodopsins are algal phototaxis receptors used in optogenetics. Results: Channel activity and photochemistry of a new channelrhodopsin (PsChR) are characterized. Conclusion: Blue-shifted PsChR has ∼3-fold greater unitary conductance, faster recovery from excitation, and higher sodium selectivity than channelrhodopsin 2 from Chlamydomonas. Significance: These properties of PsChR facilitate further analysis of light-gated channel function and are potentially useful for optogenetics.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.505495</identifier><identifier>PMID: 23995841</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algae ; Algal Proteins - genetics ; Algal Proteins - metabolism ; Algal Proteins - physiology ; Animals ; Cells, Cultured ; Channelrhodopsin ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Chlorophyta - genetics ; Chlorophyta - metabolism ; HEK293 Cells ; Humans ; Hydrogen-Ion Concentration ; Ion Channels ; Ion Channels - genetics ; Ion Channels - metabolism ; Ion Channels - physiology ; Ion Transport - physiology ; Light ; Marine Biology ; Membrane Biology ; Membrane Potentials - physiology ; Membrane Potentials - radiation effects ; Neurons - metabolism ; Neurons - physiology ; Optogenetics ; Photobiology ; Photoreceptors ; Phototaxis ; Rats ; Rats, Sprague-Dawley ; Rhodopsin - genetics ; Rhodopsin - metabolism ; Rhodopsin - physiology ; Sodium - metabolism ; Spectrometry, Fluorescence</subject><ispartof>The Journal of biological chemistry, 2013-10, Vol.288 (41), p.29911-29922</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73</citedby><cites>FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795289/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820488106$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23995841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Govorunova, Elena G.</creatorcontrib><creatorcontrib>Sineshchekov, Oleg A.</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Janz, Roger</creatorcontrib><creatorcontrib>Spudich, John L.</creatorcontrib><title>Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required. Background: Channelrhodopsins are algal phototaxis receptors used in optogenetics. Results: Channel activity and photochemistry of a new channelrhodopsin (PsChR) are characterized. Conclusion: Blue-shifted PsChR has ∼3-fold greater unitary conductance, faster recovery from excitation, and higher sodium selectivity than channelrhodopsin 2 from Chlamydomonas. Significance: These properties of PsChR facilitate further analysis of light-gated channel function and are potentially useful for optogenetics.</description><subject>Algae</subject><subject>Algal Proteins - genetics</subject><subject>Algal Proteins - metabolism</subject><subject>Algal Proteins - physiology</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Channelrhodopsin</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chlorophyta - genetics</subject><subject>Chlorophyta - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion Channels</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Ion Channels - physiology</subject><subject>Ion Transport - physiology</subject><subject>Light</subject><subject>Marine Biology</subject><subject>Membrane Biology</subject><subject>Membrane Potentials - physiology</subject><subject>Membrane Potentials - radiation effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>Photobiology</subject><subject>Photoreceptors</subject><subject>Phototaxis</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rhodopsin - genetics</subject><subject>Rhodopsin - metabolism</subject><subject>Rhodopsin - physiology</subject><subject>Sodium - metabolism</subject><subject>Spectrometry, Fluorescence</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kcFvFCEUh4nR2LX17M1w9DJbGGAHLiZ101qTNnrQpDfCMo8dGmZYgWmy_vVls7WxB7lweN_78R4fQh8oWVLS8fP7jV3eUsqWggiuxCu0oESyhgl69xotCGlpo1ohT9C7nO9JPVzRt-ikZUoJyekC5fVgkrEFkv9jio8Tjg4bfO23Q9jjS-e89TAV_CXM0OTBuwI9rj3TBCENsY-77CfsUhxxGQDfmuQnwBdha_CPYMp-jJPJOM8bG1PvXUyjz2fojTMhw_un-xT9urr8ub5ubr5__ba-uGmsEKI0lnElHRWk7ZwirndK1kK3ssw4saFSECJpRzkzHCpg6Kq1TopVy_tKuI6dos_H3N28GaG3dY9kgt4lP5q019F4_bIy-UFv44NmnRKtVDXg01NAir9nyEXX6S2EYCaIc9aUc8Ypb8kBPT-iNsWcE7jnZyjRB1W6qtIHVfqoqnZ8_He6Z_6vmwqoIwD1jx48JJ0PLiz0PoEtuo_-v-GP4dyljw</recordid><startdate>20131011</startdate><enddate>20131011</enddate><creator>Govorunova, Elena G.</creator><creator>Sineshchekov, Oleg A.</creator><creator>Li, Hai</creator><creator>Janz, Roger</creator><creator>Spudich, John L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131011</creationdate><title>Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis</title><author>Govorunova, Elena G. ; Sineshchekov, Oleg A. ; Li, Hai ; Janz, Roger ; Spudich, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algae</topic><topic>Algal Proteins - genetics</topic><topic>Algal Proteins - metabolism</topic><topic>Algal Proteins - physiology</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Channelrhodopsin</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chlorophyta - genetics</topic><topic>Chlorophyta - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion Channels</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Ion Channels - physiology</topic><topic>Ion Transport - physiology</topic><topic>Light</topic><topic>Marine Biology</topic><topic>Membrane Biology</topic><topic>Membrane Potentials - physiology</topic><topic>Membrane Potentials - radiation effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>Photobiology</topic><topic>Photoreceptors</topic><topic>Phototaxis</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rhodopsin - genetics</topic><topic>Rhodopsin - metabolism</topic><topic>Rhodopsin - physiology</topic><topic>Sodium - metabolism</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Govorunova, Elena G.</creatorcontrib><creatorcontrib>Sineshchekov, Oleg A.</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Janz, Roger</creatorcontrib><creatorcontrib>Spudich, John L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Govorunova, Elena G.</au><au>Sineshchekov, Oleg A.</au><au>Li, Hai</au><au>Janz, Roger</au><au>Spudich, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-10-11</date><risdate>2013</risdate><volume>288</volume><issue>41</issue><spage>29911</spage><epage>29922</epage><pages>29911-29922</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required. Background: Channelrhodopsins are algal phototaxis receptors used in optogenetics. Results: Channel activity and photochemistry of a new channelrhodopsin (PsChR) are characterized. Conclusion: Blue-shifted PsChR has ∼3-fold greater unitary conductance, faster recovery from excitation, and higher sodium selectivity than channelrhodopsin 2 from Chlamydomonas. Significance: These properties of PsChR facilitate further analysis of light-gated channel function and are potentially useful for optogenetics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23995841</pmid><doi>10.1074/jbc.M113.505495</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-10, Vol.288 (41), p.29911-29922
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3795289
source ScienceDirect®; PubMed Central
subjects Algae
Algal Proteins - genetics
Algal Proteins - metabolism
Algal Proteins - physiology
Animals
Cells, Cultured
Channelrhodopsin
Chlamydomonas reinhardtii - genetics
Chlamydomonas reinhardtii - metabolism
Chlorophyta - genetics
Chlorophyta - metabolism
HEK293 Cells
Humans
Hydrogen-Ion Concentration
Ion Channels
Ion Channels - genetics
Ion Channels - metabolism
Ion Channels - physiology
Ion Transport - physiology
Light
Marine Biology
Membrane Biology
Membrane Potentials - physiology
Membrane Potentials - radiation effects
Neurons - metabolism
Neurons - physiology
Optogenetics
Photobiology
Photoreceptors
Phototaxis
Rats
Rats, Sprague-Dawley
Rhodopsin - genetics
Rhodopsin - metabolism
Rhodopsin - physiology
Sodium - metabolism
Spectrometry, Fluorescence
title Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20Highly%20Efficient%20Blue-shifted%20Channelrhodopsin%20from%20the%20Marine%20Alga%20Platymonas%20subcordiformis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Govorunova,%20Elena%20G.&rft.date=2013-10-11&rft.volume=288&rft.issue=41&rft.spage=29911&rft.epage=29922&rft.pages=29911-29922&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.505495&rft_dat=%3Cproquest_pubme%3E1443414209%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1443414209&rft_id=info:pmid/23995841&rfr_iscdi=true