Loading…
Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis
Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis r...
Saved in:
Published in: | The Journal of biological chemistry 2013-10, Vol.288 (41), p.29911-29922 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73 |
---|---|
cites | cdi_FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73 |
container_end_page | 29922 |
container_issue | 41 |
container_start_page | 29911 |
container_title | The Journal of biological chemistry |
container_volume | 288 |
creator | Govorunova, Elena G. Sineshchekov, Oleg A. Li, Hai Janz, Roger Spudich, John L. |
description | Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.
Background: Channelrhodopsins are algal phototaxis receptors used in optogenetics.
Results: Channel activity and photochemistry of a new channelrhodopsin (PsChR) are characterized.
Conclusion: Blue-shifted PsChR has ∼3-fold greater unitary conductance, faster recovery from excitation, and higher sodium selectivity than channelrhodopsin 2 from Chlamydomonas.
Significance: These properties of PsChR facilitate further analysis of light-gated channel function and are potentially useful for optogenetics. |
doi_str_mv | 10.1074/jbc.M113.505495 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3795289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820488106</els_id><sourcerecordid>1443414209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73</originalsourceid><addsrcrecordid>eNp1kcFvFCEUh4nR2LX17M1w9DJbGGAHLiZ101qTNnrQpDfCMo8dGmZYgWmy_vVls7WxB7lweN_78R4fQh8oWVLS8fP7jV3eUsqWggiuxCu0oESyhgl69xotCGlpo1ohT9C7nO9JPVzRt-ikZUoJyekC5fVgkrEFkv9jio8Tjg4bfO23Q9jjS-e89TAV_CXM0OTBuwI9rj3TBCENsY-77CfsUhxxGQDfmuQnwBdha_CPYMp-jJPJOM8bG1PvXUyjz2fojTMhw_un-xT9urr8ub5ubr5__ba-uGmsEKI0lnElHRWk7ZwirndK1kK3ssw4saFSECJpRzkzHCpg6Kq1TopVy_tKuI6dos_H3N28GaG3dY9kgt4lP5q019F4_bIy-UFv44NmnRKtVDXg01NAir9nyEXX6S2EYCaIc9aUc8Ypb8kBPT-iNsWcE7jnZyjRB1W6qtIHVfqoqnZ8_He6Z_6vmwqoIwD1jx48JJ0PLiz0PoEtuo_-v-GP4dyljw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443414209</pqid></control><display><type>article</type><title>Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>Govorunova, Elena G. ; Sineshchekov, Oleg A. ; Li, Hai ; Janz, Roger ; Spudich, John L.</creator><creatorcontrib>Govorunova, Elena G. ; Sineshchekov, Oleg A. ; Li, Hai ; Janz, Roger ; Spudich, John L.</creatorcontrib><description>Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.
Background: Channelrhodopsins are algal phototaxis receptors used in optogenetics.
Results: Channel activity and photochemistry of a new channelrhodopsin (PsChR) are characterized.
Conclusion: Blue-shifted PsChR has ∼3-fold greater unitary conductance, faster recovery from excitation, and higher sodium selectivity than channelrhodopsin 2 from Chlamydomonas.
Significance: These properties of PsChR facilitate further analysis of light-gated channel function and are potentially useful for optogenetics.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.505495</identifier><identifier>PMID: 23995841</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algae ; Algal Proteins - genetics ; Algal Proteins - metabolism ; Algal Proteins - physiology ; Animals ; Cells, Cultured ; Channelrhodopsin ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Chlorophyta - genetics ; Chlorophyta - metabolism ; HEK293 Cells ; Humans ; Hydrogen-Ion Concentration ; Ion Channels ; Ion Channels - genetics ; Ion Channels - metabolism ; Ion Channels - physiology ; Ion Transport - physiology ; Light ; Marine Biology ; Membrane Biology ; Membrane Potentials - physiology ; Membrane Potentials - radiation effects ; Neurons - metabolism ; Neurons - physiology ; Optogenetics ; Photobiology ; Photoreceptors ; Phototaxis ; Rats ; Rats, Sprague-Dawley ; Rhodopsin - genetics ; Rhodopsin - metabolism ; Rhodopsin - physiology ; Sodium - metabolism ; Spectrometry, Fluorescence</subject><ispartof>The Journal of biological chemistry, 2013-10, Vol.288 (41), p.29911-29922</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73</citedby><cites>FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795289/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820488106$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23995841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Govorunova, Elena G.</creatorcontrib><creatorcontrib>Sineshchekov, Oleg A.</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Janz, Roger</creatorcontrib><creatorcontrib>Spudich, John L.</creatorcontrib><title>Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.
Background: Channelrhodopsins are algal phototaxis receptors used in optogenetics.
Results: Channel activity and photochemistry of a new channelrhodopsin (PsChR) are characterized.
Conclusion: Blue-shifted PsChR has ∼3-fold greater unitary conductance, faster recovery from excitation, and higher sodium selectivity than channelrhodopsin 2 from Chlamydomonas.
Significance: These properties of PsChR facilitate further analysis of light-gated channel function and are potentially useful for optogenetics.</description><subject>Algae</subject><subject>Algal Proteins - genetics</subject><subject>Algal Proteins - metabolism</subject><subject>Algal Proteins - physiology</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Channelrhodopsin</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chlorophyta - genetics</subject><subject>Chlorophyta - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion Channels</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Ion Channels - physiology</subject><subject>Ion Transport - physiology</subject><subject>Light</subject><subject>Marine Biology</subject><subject>Membrane Biology</subject><subject>Membrane Potentials - physiology</subject><subject>Membrane Potentials - radiation effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>Photobiology</subject><subject>Photoreceptors</subject><subject>Phototaxis</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rhodopsin - genetics</subject><subject>Rhodopsin - metabolism</subject><subject>Rhodopsin - physiology</subject><subject>Sodium - metabolism</subject><subject>Spectrometry, Fluorescence</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kcFvFCEUh4nR2LX17M1w9DJbGGAHLiZ101qTNnrQpDfCMo8dGmZYgWmy_vVls7WxB7lweN_78R4fQh8oWVLS8fP7jV3eUsqWggiuxCu0oESyhgl69xotCGlpo1ohT9C7nO9JPVzRt-ikZUoJyekC5fVgkrEFkv9jio8Tjg4bfO23Q9jjS-e89TAV_CXM0OTBuwI9rj3TBCENsY-77CfsUhxxGQDfmuQnwBdha_CPYMp-jJPJOM8bG1PvXUyjz2fojTMhw_un-xT9urr8ub5ubr5__ba-uGmsEKI0lnElHRWk7ZwirndK1kK3ssw4saFSECJpRzkzHCpg6Kq1TopVy_tKuI6dos_H3N28GaG3dY9kgt4lP5q019F4_bIy-UFv44NmnRKtVDXg01NAir9nyEXX6S2EYCaIc9aUc8Ypb8kBPT-iNsWcE7jnZyjRB1W6qtIHVfqoqnZ8_He6Z_6vmwqoIwD1jx48JJ0PLiz0PoEtuo_-v-GP4dyljw</recordid><startdate>20131011</startdate><enddate>20131011</enddate><creator>Govorunova, Elena G.</creator><creator>Sineshchekov, Oleg A.</creator><creator>Li, Hai</creator><creator>Janz, Roger</creator><creator>Spudich, John L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131011</creationdate><title>Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis</title><author>Govorunova, Elena G. ; Sineshchekov, Oleg A. ; Li, Hai ; Janz, Roger ; Spudich, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algae</topic><topic>Algal Proteins - genetics</topic><topic>Algal Proteins - metabolism</topic><topic>Algal Proteins - physiology</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Channelrhodopsin</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chlorophyta - genetics</topic><topic>Chlorophyta - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion Channels</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Ion Channels - physiology</topic><topic>Ion Transport - physiology</topic><topic>Light</topic><topic>Marine Biology</topic><topic>Membrane Biology</topic><topic>Membrane Potentials - physiology</topic><topic>Membrane Potentials - radiation effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>Photobiology</topic><topic>Photoreceptors</topic><topic>Phototaxis</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rhodopsin - genetics</topic><topic>Rhodopsin - metabolism</topic><topic>Rhodopsin - physiology</topic><topic>Sodium - metabolism</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Govorunova, Elena G.</creatorcontrib><creatorcontrib>Sineshchekov, Oleg A.</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Janz, Roger</creatorcontrib><creatorcontrib>Spudich, John L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Govorunova, Elena G.</au><au>Sineshchekov, Oleg A.</au><au>Li, Hai</au><au>Janz, Roger</au><au>Spudich, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-10-11</date><risdate>2013</risdate><volume>288</volume><issue>41</issue><spage>29911</spage><epage>29922</epage><pages>29911-29922</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.
Background: Channelrhodopsins are algal phototaxis receptors used in optogenetics.
Results: Channel activity and photochemistry of a new channelrhodopsin (PsChR) are characterized.
Conclusion: Blue-shifted PsChR has ∼3-fold greater unitary conductance, faster recovery from excitation, and higher sodium selectivity than channelrhodopsin 2 from Chlamydomonas.
Significance: These properties of PsChR facilitate further analysis of light-gated channel function and are potentially useful for optogenetics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23995841</pmid><doi>10.1074/jbc.M113.505495</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2013-10, Vol.288 (41), p.29911-29922 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3795289 |
source | ScienceDirect®; PubMed Central |
subjects | Algae Algal Proteins - genetics Algal Proteins - metabolism Algal Proteins - physiology Animals Cells, Cultured Channelrhodopsin Chlamydomonas reinhardtii - genetics Chlamydomonas reinhardtii - metabolism Chlorophyta - genetics Chlorophyta - metabolism HEK293 Cells Humans Hydrogen-Ion Concentration Ion Channels Ion Channels - genetics Ion Channels - metabolism Ion Channels - physiology Ion Transport - physiology Light Marine Biology Membrane Biology Membrane Potentials - physiology Membrane Potentials - radiation effects Neurons - metabolism Neurons - physiology Optogenetics Photobiology Photoreceptors Phototaxis Rats Rats, Sprague-Dawley Rhodopsin - genetics Rhodopsin - metabolism Rhodopsin - physiology Sodium - metabolism Spectrometry, Fluorescence |
title | Characterization of a Highly Efficient Blue-shifted Channelrhodopsin from the Marine Alga Platymonas subcordiformis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20Highly%20Efficient%20Blue-shifted%20Channelrhodopsin%20from%20the%20Marine%20Alga%20Platymonas%20subcordiformis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Govorunova,%20Elena%20G.&rft.date=2013-10-11&rft.volume=288&rft.issue=41&rft.spage=29911&rft.epage=29922&rft.pages=29911-29922&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.505495&rft_dat=%3Cproquest_pubme%3E1443414209%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-c3498f15027f90fdf98c5576c3af5b18500817143a4ef90a162cf85624d3aff73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1443414209&rft_id=info:pmid/23995841&rfr_iscdi=true |