Loading…

Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers

Amyloid fibrils are self-assembled protein aggregates implicated in a number of human diseases. Fragmentation-dominated models for the self-assembly of amyloid fibrils have had important successes in explaining the kinetics of amyloid fibril formation but predict fibril length distributions that do...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2013, Vol.4 (1), p.1891-1891, Article 1891
Main Authors: Morris, Ryan J., Eden, Kym, Yarwood, Reuben, Jourdain, Line, Allen, Rosalind J., MacPhee, Cait E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-f93767c6da3137ba3337f6cd3f60cf0b4bbd337137bac25e3eade42e32b5f2443
cites cdi_FETCH-LOGICAL-c477t-f93767c6da3137ba3337f6cd3f60cf0b4bbd337137bac25e3eade42e32b5f2443
container_end_page 1891
container_issue 1
container_start_page 1891
container_title Nature communications
container_volume 4
creator Morris, Ryan J.
Eden, Kym
Yarwood, Reuben
Jourdain, Line
Allen, Rosalind J.
MacPhee, Cait E.
description Amyloid fibrils are self-assembled protein aggregates implicated in a number of human diseases. Fragmentation-dominated models for the self-assembly of amyloid fibrils have had important successes in explaining the kinetics of amyloid fibril formation but predict fibril length distributions that do not match experiments. Here we resolve this inconsistency using a combination of experimental kinetic measurements and computer simulations. We provide evidence for a structural transition that occurs at a critical fibril mass concentration, or CFC, above which fragmentation of fibrils is suppressed. Our simulations predict the formation of distinct fibril length distributions above and below the CFC, which we confirm by electron microscopy. These results point to a new picture of amyloid fibril growth in which structural transitions that occur during self-assembly have strong effects on the final population of aggregate species with small, and potentially cytotoxic, oligomers dominating for long periods of time at protein concentrations below the CFC. Amyloid fibrils are implicated in a number of diseases but the origin of their length distributions is poorly understood. Here, evidence is presented to support a structural transition at a critical mass concentration, above which fragmentation of fibrils is suppressed.
doi_str_mv 10.1038/ncomms2909
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3796876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1354792671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-f93767c6da3137ba3337f6cd3f60cf0b4bbd337137bac25e3eade42e32b5f2443</originalsourceid><addsrcrecordid>eNplkV9vFCEUxYnR2Kb2xQ9gJvHFaNbyb2B4MWkatSZrfGkf-kQY5rJLw8AKM5v028t2a7tWXiD3_DjnwkXoLcGfCWbdWbRpHAtVWL1AxxRzsiCSspcH5yN0Wsotrosp0nH-Gh1RJlQruvYY3fwEuzbRl8nbxsShgbj1OcUR4mRCY1OccgpNcs20hmaTYWsCRAv3bPAOJj_CTjbjXUh-aFLwqzRCLm_QK2dCgdOH_QRdf_t6dXG5WP76_uPifLmwXMpp4RSTQloxGEaY7A1jTDphB-YEtg73vO-HWrrXLG2BgRmAU2C0bx3lnJ2gL3vfzdyPMNjaeDZBb7IfTb7TyXj9rxL9Wq_SVjOpRCdFNfi4N1g_u3Z5vtQ-llljKjtKCNuSCn94SMvp9wxl0qMvFkIwEdJcNGEtl4oKuUPfP0Nv05xj_Ysd1XaKq7Z9Src5lZLBPbZAsN5NWD9NuMLvDt_6iP6dZwU-7YFSpbiCfJD5v90fIdayRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355894955</pqid></control><display><type>article</type><title>Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers</title><source>PubMed (Medline)</source><source>Nature.com</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Morris, Ryan J. ; Eden, Kym ; Yarwood, Reuben ; Jourdain, Line ; Allen, Rosalind J. ; MacPhee, Cait E.</creator><creatorcontrib>Morris, Ryan J. ; Eden, Kym ; Yarwood, Reuben ; Jourdain, Line ; Allen, Rosalind J. ; MacPhee, Cait E.</creatorcontrib><description>Amyloid fibrils are self-assembled protein aggregates implicated in a number of human diseases. Fragmentation-dominated models for the self-assembly of amyloid fibrils have had important successes in explaining the kinetics of amyloid fibril formation but predict fibril length distributions that do not match experiments. Here we resolve this inconsistency using a combination of experimental kinetic measurements and computer simulations. We provide evidence for a structural transition that occurs at a critical fibril mass concentration, or CFC, above which fragmentation of fibrils is suppressed. Our simulations predict the formation of distinct fibril length distributions above and below the CFC, which we confirm by electron microscopy. These results point to a new picture of amyloid fibril growth in which structural transitions that occur during self-assembly have strong effects on the final population of aggregate species with small, and potentially cytotoxic, oligomers dominating for long periods of time at protein concentrations below the CFC. Amyloid fibrils are implicated in a number of diseases but the origin of their length distributions is poorly understood. Here, evidence is presented to support a structural transition at a critical mass concentration, above which fragmentation of fibrils is suppressed.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2909</identifier><identifier>PMID: 23695685</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/2272 ; Alzheimer's disease ; Amyloid - chemistry ; Amyloid - metabolism ; Amyloid - ultrastructure ; Animals ; Biochemistry, Molecular Biology ; Cattle ; Computer Simulation ; Humanities and Social Sciences ; Humans ; Insulin ; Insulin - chemistry ; Insulin - metabolism ; Kinetics ; Life Sciences ; Models, Molecular ; Molecular Weight ; multidisciplinary ; Protein Structure, Quaternary ; Proteins ; Science ; Science (multidisciplinary) ; Simulation ; Sodium Chloride - pharmacology ; Time Factors</subject><ispartof>Nature communications, 2013, Vol.4 (1), p.1891-1891, Article 1891</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group May 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-f93767c6da3137ba3337f6cd3f60cf0b4bbd337137bac25e3eade42e32b5f2443</citedby><cites>FETCH-LOGICAL-c477t-f93767c6da3137ba3337f6cd3f60cf0b4bbd337137bac25e3eade42e32b5f2443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1355894955/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1355894955?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,25753,27923,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23695685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-02782113$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, Ryan J.</creatorcontrib><creatorcontrib>Eden, Kym</creatorcontrib><creatorcontrib>Yarwood, Reuben</creatorcontrib><creatorcontrib>Jourdain, Line</creatorcontrib><creatorcontrib>Allen, Rosalind J.</creatorcontrib><creatorcontrib>MacPhee, Cait E.</creatorcontrib><title>Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Amyloid fibrils are self-assembled protein aggregates implicated in a number of human diseases. Fragmentation-dominated models for the self-assembly of amyloid fibrils have had important successes in explaining the kinetics of amyloid fibril formation but predict fibril length distributions that do not match experiments. Here we resolve this inconsistency using a combination of experimental kinetic measurements and computer simulations. We provide evidence for a structural transition that occurs at a critical fibril mass concentration, or CFC, above which fragmentation of fibrils is suppressed. Our simulations predict the formation of distinct fibril length distributions above and below the CFC, which we confirm by electron microscopy. These results point to a new picture of amyloid fibril growth in which structural transitions that occur during self-assembly have strong effects on the final population of aggregate species with small, and potentially cytotoxic, oligomers dominating for long periods of time at protein concentrations below the CFC. Amyloid fibrils are implicated in a number of diseases but the origin of their length distributions is poorly understood. Here, evidence is presented to support a structural transition at a critical mass concentration, above which fragmentation of fibrils is suppressed.</description><subject>631/57/2272</subject><subject>Alzheimer's disease</subject><subject>Amyloid - chemistry</subject><subject>Amyloid - metabolism</subject><subject>Amyloid - ultrastructure</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cattle</subject><subject>Computer Simulation</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>Molecular Weight</subject><subject>multidisciplinary</subject><subject>Protein Structure, Quaternary</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Sodium Chloride - pharmacology</subject><subject>Time Factors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV9vFCEUxYnR2Kb2xQ9gJvHFaNbyb2B4MWkatSZrfGkf-kQY5rJLw8AKM5v028t2a7tWXiD3_DjnwkXoLcGfCWbdWbRpHAtVWL1AxxRzsiCSspcH5yN0Wsotrosp0nH-Gh1RJlQruvYY3fwEuzbRl8nbxsShgbj1OcUR4mRCY1OccgpNcs20hmaTYWsCRAv3bPAOJj_CTjbjXUh-aFLwqzRCLm_QK2dCgdOH_QRdf_t6dXG5WP76_uPifLmwXMpp4RSTQloxGEaY7A1jTDphB-YEtg73vO-HWrrXLG2BgRmAU2C0bx3lnJ2gL3vfzdyPMNjaeDZBb7IfTb7TyXj9rxL9Wq_SVjOpRCdFNfi4N1g_u3Z5vtQ-llljKjtKCNuSCn94SMvp9wxl0qMvFkIwEdJcNGEtl4oKuUPfP0Nv05xj_Ysd1XaKq7Z9Src5lZLBPbZAsN5NWD9NuMLvDt_6iP6dZwU-7YFSpbiCfJD5v90fIdayRw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Morris, Ryan J.</creator><creator>Eden, Kym</creator><creator>Yarwood, Reuben</creator><creator>Jourdain, Line</creator><creator>Allen, Rosalind J.</creator><creator>MacPhee, Cait E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>2013</creationdate><title>Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers</title><author>Morris, Ryan J. ; Eden, Kym ; Yarwood, Reuben ; Jourdain, Line ; Allen, Rosalind J. ; MacPhee, Cait E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-f93767c6da3137ba3337f6cd3f60cf0b4bbd337137bac25e3eade42e32b5f2443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/57/2272</topic><topic>Alzheimer's disease</topic><topic>Amyloid - chemistry</topic><topic>Amyloid - metabolism</topic><topic>Amyloid - ultrastructure</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cattle</topic><topic>Computer Simulation</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>Molecular Weight</topic><topic>multidisciplinary</topic><topic>Protein Structure, Quaternary</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Sodium Chloride - pharmacology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Ryan J.</creatorcontrib><creatorcontrib>Eden, Kym</creatorcontrib><creatorcontrib>Yarwood, Reuben</creatorcontrib><creatorcontrib>Jourdain, Line</creatorcontrib><creatorcontrib>Allen, Rosalind J.</creatorcontrib><creatorcontrib>MacPhee, Cait E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Ryan J.</au><au>Eden, Kym</au><au>Yarwood, Reuben</au><au>Jourdain, Line</au><au>Allen, Rosalind J.</au><au>MacPhee, Cait E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1891</spage><epage>1891</epage><pages>1891-1891</pages><artnum>1891</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Amyloid fibrils are self-assembled protein aggregates implicated in a number of human diseases. Fragmentation-dominated models for the self-assembly of amyloid fibrils have had important successes in explaining the kinetics of amyloid fibril formation but predict fibril length distributions that do not match experiments. Here we resolve this inconsistency using a combination of experimental kinetic measurements and computer simulations. We provide evidence for a structural transition that occurs at a critical fibril mass concentration, or CFC, above which fragmentation of fibrils is suppressed. Our simulations predict the formation of distinct fibril length distributions above and below the CFC, which we confirm by electron microscopy. These results point to a new picture of amyloid fibril growth in which structural transitions that occur during self-assembly have strong effects on the final population of aggregate species with small, and potentially cytotoxic, oligomers dominating for long periods of time at protein concentrations below the CFC. Amyloid fibrils are implicated in a number of diseases but the origin of their length distributions is poorly understood. Here, evidence is presented to support a structural transition at a critical mass concentration, above which fragmentation of fibrils is suppressed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23695685</pmid><doi>10.1038/ncomms2909</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2013, Vol.4 (1), p.1891-1891, Article 1891
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3796876
source PubMed (Medline); Nature.com; Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/57/2272
Alzheimer's disease
Amyloid - chemistry
Amyloid - metabolism
Amyloid - ultrastructure
Animals
Biochemistry, Molecular Biology
Cattle
Computer Simulation
Humanities and Social Sciences
Humans
Insulin
Insulin - chemistry
Insulin - metabolism
Kinetics
Life Sciences
Models, Molecular
Molecular Weight
multidisciplinary
Protein Structure, Quaternary
Proteins
Science
Science (multidisciplinary)
Simulation
Sodium Chloride - pharmacology
Time Factors
title Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20and%20environmental%20control%20of%20the%20prevalence%20and%20lifetime%20of%20amyloid%20oligomers&rft.jtitle=Nature%20communications&rft.au=Morris,%20Ryan%20J.&rft.date=2013&rft.volume=4&rft.issue=1&rft.spage=1891&rft.epage=1891&rft.pages=1891-1891&rft.artnum=1891&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2909&rft_dat=%3Cproquest_pubme%3E1354792671%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-f93767c6da3137ba3337f6cd3f60cf0b4bbd337137bac25e3eade42e32b5f2443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1355894955&rft_id=info:pmid/23695685&rfr_iscdi=true