Loading…

Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive

Abstract Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear, and the inhibitory input carries information from the contralateral ear....

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 2011-11, Vol.196, p.285-296
Main Authors: Alamilla, J, Gillespie, D.C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883
cites cdi_FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883
container_end_page 296
container_issue
container_start_page 285
container_title Neuroscience
container_volume 196
creator Alamilla, J
Gillespie, D.C
description Abstract Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear, and the inhibitory input carries information from the contralateral ear. Throughout life, the excitatory input pathway releases glutamate. In adulthood, the inhibitory input pathway releases glycine. During a period of major developmental refinement in the LSO, however, synaptic terminals of the immature inhibitory input pathway release not only glycine, but also GABA and glutamate. To determine whether glutamate released by terminals in either pathway could spill over to activate postsynaptic N -methyl- d -aspartate (NMDA) receptors under the other pathway, we made whole-cell recordings from LSO principal cells in acute slices of neonatal rat brainstem bathed in the use-dependent NMDA receptor antagonist MK-801 and stimulated in the two opposing pathways. We found that during the first postnatal week glutamate spillover occurs bidirectionally from both immature excitatory terminals and immature inhibitory terminals. We further found that a population of postsynaptic NMDA receptors is shared: glutamate released from either pathway can diffuse to and activate these receptors. We suggest that these shared receptors contain the GluN2B subunit and are located extrasynaptically.
doi_str_mv 10.1016/j.neuroscience.2011.08.060
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3797087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452211010189</els_id><sourcerecordid>898838904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883</originalsourceid><addsrcrecordid>eNqNksGO0zAQhi0EYkvhFVCEhDil2I6TOBxWQsuyIK3EAThbjjNpXVwn2E6lvgcPvBO1WxYukEukmW9mfs8_hLxidMUoq95uVx6mMERjwRtYccrYisoVregjsmCyLvK6FOIxWdCCVrkoOb8gz2LcUvxKUTwlF5w1tK6rYkF-3bgp6Z1OENbWZNaPU4qZ9l22vk_kARzoaP06szsMTAGQ29jWpiEcziUm2T3Smc7iRgfosnGIKR68HhM2DmBgRB6j4-R0soPHyszNg7XL4jRCsJgenN3Dc_Kk1y7Ci9N_Sb5_vP529Sm__XLz-er9bW4qWqS8ByYL6Dsq5vdw2WtWN21fmrYVhpuGayHbupUco3UtqMGtcNM1WoJmXMpiSS6Pfcep3UFnwCcUo8Zgdzoc1KCt-jPj7Uath70q6qamuOgleXNqEIafE8SkdjYacE57GKaoUFVRFqKs_knKBvXIhgok3x1JgxbHAP1ZD6Nq9l9t1UP_1ey_olKh_1j88uGLzqX3hiPw-gToaLTrg_bGxt-cqBqJZ4PchyMHuP-9haBO4zqLVibVDfb_9Fz-1cY46y1O_gEHiNthCh4dVkxFrqj6Ol_sfLAMG1Mmm-IO1EPwlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898838904</pqid></control><display><type>article</type><title>Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive</title><source>ScienceDirect Freedom Collection</source><creator>Alamilla, J ; Gillespie, D.C</creator><creatorcontrib>Alamilla, J ; Gillespie, D.C</creatorcontrib><description>Abstract Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear, and the inhibitory input carries information from the contralateral ear. Throughout life, the excitatory input pathway releases glutamate. In adulthood, the inhibitory input pathway releases glycine. During a period of major developmental refinement in the LSO, however, synaptic terminals of the immature inhibitory input pathway release not only glycine, but also GABA and glutamate. To determine whether glutamate released by terminals in either pathway could spill over to activate postsynaptic N -methyl- d -aspartate (NMDA) receptors under the other pathway, we made whole-cell recordings from LSO principal cells in acute slices of neonatal rat brainstem bathed in the use-dependent NMDA receptor antagonist MK-801 and stimulated in the two opposing pathways. We found that during the first postnatal week glutamate spillover occurs bidirectionally from both immature excitatory terminals and immature inhibitory terminals. We further found that a population of postsynaptic NMDA receptors is shared: glutamate released from either pathway can diffuse to and activate these receptors. We suggest that these shared receptors contain the GluN2B subunit and are located extrasynaptically.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2011.08.060</identifier><identifier>PMID: 21907763</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Animals ; Animals, Newborn ; auditory brainstem ; Biological and medical sciences ; crosstalk ; Dizocilpine Maleate - pharmacology ; Electric Stimulation - methods ; Excitatory Amino Acid Antagonists - pharmacology ; Fundamental and applied biological sciences. Psychology ; GluN2B ; Glutamic Acid - metabolism ; Glutamic Acid - physiology ; In Vitro Techniques ; Neural Inhibition - physiology ; Neural Pathways - physiology ; Neurology ; Neurons - metabolism ; Neurons - physiology ; NMDA receptor ; Olivary Nucleus - drug effects ; Olivary Nucleus - metabolism ; Olivary Nucleus - physiology ; Patch-Clamp Techniques - methods ; Pons - drug effects ; Pons - physiology ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - physiology ; Rats ; Rats, Sprague-Dawley ; Receptor Cross-Talk - drug effects ; Receptor Cross-Talk - physiology ; Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors ; Receptors, N-Methyl-D-Aspartate - physiology ; spillover ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Neuroscience, 2011-11, Vol.196, p.285-296</ispartof><rights>IBRO</rights><rights>2011 IBRO</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883</citedby><cites>FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24698030$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21907763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alamilla, J</creatorcontrib><creatorcontrib>Gillespie, D.C</creatorcontrib><title>Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>Abstract Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear, and the inhibitory input carries information from the contralateral ear. Throughout life, the excitatory input pathway releases glutamate. In adulthood, the inhibitory input pathway releases glycine. During a period of major developmental refinement in the LSO, however, synaptic terminals of the immature inhibitory input pathway release not only glycine, but also GABA and glutamate. To determine whether glutamate released by terminals in either pathway could spill over to activate postsynaptic N -methyl- d -aspartate (NMDA) receptors under the other pathway, we made whole-cell recordings from LSO principal cells in acute slices of neonatal rat brainstem bathed in the use-dependent NMDA receptor antagonist MK-801 and stimulated in the two opposing pathways. We found that during the first postnatal week glutamate spillover occurs bidirectionally from both immature excitatory terminals and immature inhibitory terminals. We further found that a population of postsynaptic NMDA receptors is shared: glutamate released from either pathway can diffuse to and activate these receptors. We suggest that these shared receptors contain the GluN2B subunit and are located extrasynaptically.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>auditory brainstem</subject><subject>Biological and medical sciences</subject><subject>crosstalk</subject><subject>Dizocilpine Maleate - pharmacology</subject><subject>Electric Stimulation - methods</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GluN2B</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic Acid - physiology</subject><subject>In Vitro Techniques</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - physiology</subject><subject>Neurology</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>NMDA receptor</subject><subject>Olivary Nucleus - drug effects</subject><subject>Olivary Nucleus - metabolism</subject><subject>Olivary Nucleus - physiology</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Pons - drug effects</subject><subject>Pons - physiology</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor Cross-Talk - drug effects</subject><subject>Receptor Cross-Talk - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>spillover</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNksGO0zAQhi0EYkvhFVCEhDil2I6TOBxWQsuyIK3EAThbjjNpXVwn2E6lvgcPvBO1WxYukEukmW9mfs8_hLxidMUoq95uVx6mMERjwRtYccrYisoVregjsmCyLvK6FOIxWdCCVrkoOb8gz2LcUvxKUTwlF5w1tK6rYkF-3bgp6Z1OENbWZNaPU4qZ9l22vk_kARzoaP06szsMTAGQ29jWpiEcziUm2T3Smc7iRgfosnGIKR68HhM2DmBgRB6j4-R0soPHyszNg7XL4jRCsJgenN3Dc_Kk1y7Ci9N_Sb5_vP529Sm__XLz-er9bW4qWqS8ByYL6Dsq5vdw2WtWN21fmrYVhpuGayHbupUco3UtqMGtcNM1WoJmXMpiSS6Pfcep3UFnwCcUo8Zgdzoc1KCt-jPj7Uath70q6qamuOgleXNqEIafE8SkdjYacE57GKaoUFVRFqKs_knKBvXIhgok3x1JgxbHAP1ZD6Nq9l9t1UP_1ey_olKh_1j88uGLzqX3hiPw-gToaLTrg_bGxt-cqBqJZ4PchyMHuP-9haBO4zqLVibVDfb_9Fz-1cY46y1O_gEHiNthCh4dVkxFrqj6Ol_sfLAMG1Mmm-IO1EPwlg</recordid><startdate>20111124</startdate><enddate>20111124</enddate><creator>Alamilla, J</creator><creator>Gillespie, D.C</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20111124</creationdate><title>Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive</title><author>Alamilla, J ; Gillespie, D.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>auditory brainstem</topic><topic>Biological and medical sciences</topic><topic>crosstalk</topic><topic>Dizocilpine Maleate - pharmacology</topic><topic>Electric Stimulation - methods</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GluN2B</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic Acid - physiology</topic><topic>In Vitro Techniques</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - physiology</topic><topic>Neurology</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>NMDA receptor</topic><topic>Olivary Nucleus - drug effects</topic><topic>Olivary Nucleus - metabolism</topic><topic>Olivary Nucleus - physiology</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Pons - drug effects</topic><topic>Pons - physiology</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor Cross-Talk - drug effects</topic><topic>Receptor Cross-Talk - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>spillover</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alamilla, J</creatorcontrib><creatorcontrib>Gillespie, D.C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alamilla, J</au><au>Gillespie, D.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2011-11-24</date><risdate>2011</risdate><volume>196</volume><spage>285</spage><epage>296</epage><pages>285-296</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>Abstract Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear, and the inhibitory input carries information from the contralateral ear. Throughout life, the excitatory input pathway releases glutamate. In adulthood, the inhibitory input pathway releases glycine. During a period of major developmental refinement in the LSO, however, synaptic terminals of the immature inhibitory input pathway release not only glycine, but also GABA and glutamate. To determine whether glutamate released by terminals in either pathway could spill over to activate postsynaptic N -methyl- d -aspartate (NMDA) receptors under the other pathway, we made whole-cell recordings from LSO principal cells in acute slices of neonatal rat brainstem bathed in the use-dependent NMDA receptor antagonist MK-801 and stimulated in the two opposing pathways. We found that during the first postnatal week glutamate spillover occurs bidirectionally from both immature excitatory terminals and immature inhibitory terminals. We further found that a population of postsynaptic NMDA receptors is shared: glutamate released from either pathway can diffuse to and activate these receptors. We suggest that these shared receptors contain the GluN2B subunit and are located extrasynaptically.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><pmid>21907763</pmid><doi>10.1016/j.neuroscience.2011.08.060</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 2011-11, Vol.196, p.285-296
issn 0306-4522
1873-7544
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3797087
source ScienceDirect Freedom Collection
subjects Animals
Animals, Newborn
auditory brainstem
Biological and medical sciences
crosstalk
Dizocilpine Maleate - pharmacology
Electric Stimulation - methods
Excitatory Amino Acid Antagonists - pharmacology
Fundamental and applied biological sciences. Psychology
GluN2B
Glutamic Acid - metabolism
Glutamic Acid - physiology
In Vitro Techniques
Neural Inhibition - physiology
Neural Pathways - physiology
Neurology
Neurons - metabolism
Neurons - physiology
NMDA receptor
Olivary Nucleus - drug effects
Olivary Nucleus - metabolism
Olivary Nucleus - physiology
Patch-Clamp Techniques - methods
Pons - drug effects
Pons - physiology
Presynaptic Terminals - metabolism
Presynaptic Terminals - physiology
Rats
Rats, Sprague-Dawley
Receptor Cross-Talk - drug effects
Receptor Cross-Talk - physiology
Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors
Receptors, N-Methyl-D-Aspartate - physiology
spillover
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Vertebrates: nervous system and sense organs
title Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glutamatergic%20inputs%20and%20glutamate-releasing%20immature%20inhibitory%20inputs%20activate%20a%20shared%20postsynaptic%20receptor%20population%20in%20lateral%20superior%20olive&rft.jtitle=Neuroscience&rft.au=Alamilla,%20J&rft.date=2011-11-24&rft.volume=196&rft.spage=285&rft.epage=296&rft.pages=285-296&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/j.neuroscience.2011.08.060&rft_dat=%3Cproquest_pubme%3E898838904%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=898838904&rft_id=info:pmid/21907763&rfr_iscdi=true