Loading…
Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive
Abstract Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear, and the inhibitory input carries information from the contralateral ear....
Saved in:
Published in: | Neuroscience 2011-11, Vol.196, p.285-296 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883 |
---|---|
cites | cdi_FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883 |
container_end_page | 296 |
container_issue | |
container_start_page | 285 |
container_title | Neuroscience |
container_volume | 196 |
creator | Alamilla, J Gillespie, D.C |
description | Abstract Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear, and the inhibitory input carries information from the contralateral ear. Throughout life, the excitatory input pathway releases glutamate. In adulthood, the inhibitory input pathway releases glycine. During a period of major developmental refinement in the LSO, however, synaptic terminals of the immature inhibitory input pathway release not only glycine, but also GABA and glutamate. To determine whether glutamate released by terminals in either pathway could spill over to activate postsynaptic N -methyl- d -aspartate (NMDA) receptors under the other pathway, we made whole-cell recordings from LSO principal cells in acute slices of neonatal rat brainstem bathed in the use-dependent NMDA receptor antagonist MK-801 and stimulated in the two opposing pathways. We found that during the first postnatal week glutamate spillover occurs bidirectionally from both immature excitatory terminals and immature inhibitory terminals. We further found that a population of postsynaptic NMDA receptors is shared: glutamate released from either pathway can diffuse to and activate these receptors. We suggest that these shared receptors contain the GluN2B subunit and are located extrasynaptically. |
doi_str_mv | 10.1016/j.neuroscience.2011.08.060 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3797087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452211010189</els_id><sourcerecordid>898838904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883</originalsourceid><addsrcrecordid>eNqNksGO0zAQhi0EYkvhFVCEhDil2I6TOBxWQsuyIK3EAThbjjNpXVwn2E6lvgcPvBO1WxYukEukmW9mfs8_hLxidMUoq95uVx6mMERjwRtYccrYisoVregjsmCyLvK6FOIxWdCCVrkoOb8gz2LcUvxKUTwlF5w1tK6rYkF-3bgp6Z1OENbWZNaPU4qZ9l22vk_kARzoaP06szsMTAGQ29jWpiEcziUm2T3Smc7iRgfosnGIKR68HhM2DmBgRB6j4-R0soPHyszNg7XL4jRCsJgenN3Dc_Kk1y7Ci9N_Sb5_vP529Sm__XLz-er9bW4qWqS8ByYL6Dsq5vdw2WtWN21fmrYVhpuGayHbupUco3UtqMGtcNM1WoJmXMpiSS6Pfcep3UFnwCcUo8Zgdzoc1KCt-jPj7Uath70q6qamuOgleXNqEIafE8SkdjYacE57GKaoUFVRFqKs_knKBvXIhgok3x1JgxbHAP1ZD6Nq9l9t1UP_1ey_olKh_1j88uGLzqX3hiPw-gToaLTrg_bGxt-cqBqJZ4PchyMHuP-9haBO4zqLVibVDfb_9Fz-1cY46y1O_gEHiNthCh4dVkxFrqj6Ol_sfLAMG1Mmm-IO1EPwlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898838904</pqid></control><display><type>article</type><title>Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive</title><source>ScienceDirect Freedom Collection</source><creator>Alamilla, J ; Gillespie, D.C</creator><creatorcontrib>Alamilla, J ; Gillespie, D.C</creatorcontrib><description>Abstract Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear, and the inhibitory input carries information from the contralateral ear. Throughout life, the excitatory input pathway releases glutamate. In adulthood, the inhibitory input pathway releases glycine. During a period of major developmental refinement in the LSO, however, synaptic terminals of the immature inhibitory input pathway release not only glycine, but also GABA and glutamate. To determine whether glutamate released by terminals in either pathway could spill over to activate postsynaptic N -methyl- d -aspartate (NMDA) receptors under the other pathway, we made whole-cell recordings from LSO principal cells in acute slices of neonatal rat brainstem bathed in the use-dependent NMDA receptor antagonist MK-801 and stimulated in the two opposing pathways. We found that during the first postnatal week glutamate spillover occurs bidirectionally from both immature excitatory terminals and immature inhibitory terminals. We further found that a population of postsynaptic NMDA receptors is shared: glutamate released from either pathway can diffuse to and activate these receptors. We suggest that these shared receptors contain the GluN2B subunit and are located extrasynaptically.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2011.08.060</identifier><identifier>PMID: 21907763</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Animals ; Animals, Newborn ; auditory brainstem ; Biological and medical sciences ; crosstalk ; Dizocilpine Maleate - pharmacology ; Electric Stimulation - methods ; Excitatory Amino Acid Antagonists - pharmacology ; Fundamental and applied biological sciences. Psychology ; GluN2B ; Glutamic Acid - metabolism ; Glutamic Acid - physiology ; In Vitro Techniques ; Neural Inhibition - physiology ; Neural Pathways - physiology ; Neurology ; Neurons - metabolism ; Neurons - physiology ; NMDA receptor ; Olivary Nucleus - drug effects ; Olivary Nucleus - metabolism ; Olivary Nucleus - physiology ; Patch-Clamp Techniques - methods ; Pons - drug effects ; Pons - physiology ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - physiology ; Rats ; Rats, Sprague-Dawley ; Receptor Cross-Talk - drug effects ; Receptor Cross-Talk - physiology ; Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors ; Receptors, N-Methyl-D-Aspartate - physiology ; spillover ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Neuroscience, 2011-11, Vol.196, p.285-296</ispartof><rights>IBRO</rights><rights>2011 IBRO</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883</citedby><cites>FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24698030$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21907763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alamilla, J</creatorcontrib><creatorcontrib>Gillespie, D.C</creatorcontrib><title>Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>Abstract Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear, and the inhibitory input carries information from the contralateral ear. Throughout life, the excitatory input pathway releases glutamate. In adulthood, the inhibitory input pathway releases glycine. During a period of major developmental refinement in the LSO, however, synaptic terminals of the immature inhibitory input pathway release not only glycine, but also GABA and glutamate. To determine whether glutamate released by terminals in either pathway could spill over to activate postsynaptic N -methyl- d -aspartate (NMDA) receptors under the other pathway, we made whole-cell recordings from LSO principal cells in acute slices of neonatal rat brainstem bathed in the use-dependent NMDA receptor antagonist MK-801 and stimulated in the two opposing pathways. We found that during the first postnatal week glutamate spillover occurs bidirectionally from both immature excitatory terminals and immature inhibitory terminals. We further found that a population of postsynaptic NMDA receptors is shared: glutamate released from either pathway can diffuse to and activate these receptors. We suggest that these shared receptors contain the GluN2B subunit and are located extrasynaptically.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>auditory brainstem</subject><subject>Biological and medical sciences</subject><subject>crosstalk</subject><subject>Dizocilpine Maleate - pharmacology</subject><subject>Electric Stimulation - methods</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GluN2B</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic Acid - physiology</subject><subject>In Vitro Techniques</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - physiology</subject><subject>Neurology</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>NMDA receptor</subject><subject>Olivary Nucleus - drug effects</subject><subject>Olivary Nucleus - metabolism</subject><subject>Olivary Nucleus - physiology</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Pons - drug effects</subject><subject>Pons - physiology</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor Cross-Talk - drug effects</subject><subject>Receptor Cross-Talk - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>spillover</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNksGO0zAQhi0EYkvhFVCEhDil2I6TOBxWQsuyIK3EAThbjjNpXVwn2E6lvgcPvBO1WxYukEukmW9mfs8_hLxidMUoq95uVx6mMERjwRtYccrYisoVregjsmCyLvK6FOIxWdCCVrkoOb8gz2LcUvxKUTwlF5w1tK6rYkF-3bgp6Z1OENbWZNaPU4qZ9l22vk_kARzoaP06szsMTAGQ29jWpiEcziUm2T3Smc7iRgfosnGIKR68HhM2DmBgRB6j4-R0soPHyszNg7XL4jRCsJgenN3Dc_Kk1y7Ci9N_Sb5_vP529Sm__XLz-er9bW4qWqS8ByYL6Dsq5vdw2WtWN21fmrYVhpuGayHbupUco3UtqMGtcNM1WoJmXMpiSS6Pfcep3UFnwCcUo8Zgdzoc1KCt-jPj7Uath70q6qamuOgleXNqEIafE8SkdjYacE57GKaoUFVRFqKs_knKBvXIhgok3x1JgxbHAP1ZD6Nq9l9t1UP_1ey_olKh_1j88uGLzqX3hiPw-gToaLTrg_bGxt-cqBqJZ4PchyMHuP-9haBO4zqLVibVDfb_9Fz-1cY46y1O_gEHiNthCh4dVkxFrqj6Ol_sfLAMG1Mmm-IO1EPwlg</recordid><startdate>20111124</startdate><enddate>20111124</enddate><creator>Alamilla, J</creator><creator>Gillespie, D.C</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20111124</creationdate><title>Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive</title><author>Alamilla, J ; Gillespie, D.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>auditory brainstem</topic><topic>Biological and medical sciences</topic><topic>crosstalk</topic><topic>Dizocilpine Maleate - pharmacology</topic><topic>Electric Stimulation - methods</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GluN2B</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic Acid - physiology</topic><topic>In Vitro Techniques</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - physiology</topic><topic>Neurology</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>NMDA receptor</topic><topic>Olivary Nucleus - drug effects</topic><topic>Olivary Nucleus - metabolism</topic><topic>Olivary Nucleus - physiology</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Pons - drug effects</topic><topic>Pons - physiology</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor Cross-Talk - drug effects</topic><topic>Receptor Cross-Talk - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>spillover</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alamilla, J</creatorcontrib><creatorcontrib>Gillespie, D.C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alamilla, J</au><au>Gillespie, D.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2011-11-24</date><risdate>2011</risdate><volume>196</volume><spage>285</spage><epage>296</epage><pages>285-296</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>Abstract Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear, and the inhibitory input carries information from the contralateral ear. Throughout life, the excitatory input pathway releases glutamate. In adulthood, the inhibitory input pathway releases glycine. During a period of major developmental refinement in the LSO, however, synaptic terminals of the immature inhibitory input pathway release not only glycine, but also GABA and glutamate. To determine whether glutamate released by terminals in either pathway could spill over to activate postsynaptic N -methyl- d -aspartate (NMDA) receptors under the other pathway, we made whole-cell recordings from LSO principal cells in acute slices of neonatal rat brainstem bathed in the use-dependent NMDA receptor antagonist MK-801 and stimulated in the two opposing pathways. We found that during the first postnatal week glutamate spillover occurs bidirectionally from both immature excitatory terminals and immature inhibitory terminals. We further found that a population of postsynaptic NMDA receptors is shared: glutamate released from either pathway can diffuse to and activate these receptors. We suggest that these shared receptors contain the GluN2B subunit and are located extrasynaptically.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><pmid>21907763</pmid><doi>10.1016/j.neuroscience.2011.08.060</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4522 |
ispartof | Neuroscience, 2011-11, Vol.196, p.285-296 |
issn | 0306-4522 1873-7544 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3797087 |
source | ScienceDirect Freedom Collection |
subjects | Animals Animals, Newborn auditory brainstem Biological and medical sciences crosstalk Dizocilpine Maleate - pharmacology Electric Stimulation - methods Excitatory Amino Acid Antagonists - pharmacology Fundamental and applied biological sciences. Psychology GluN2B Glutamic Acid - metabolism Glutamic Acid - physiology In Vitro Techniques Neural Inhibition - physiology Neural Pathways - physiology Neurology Neurons - metabolism Neurons - physiology NMDA receptor Olivary Nucleus - drug effects Olivary Nucleus - metabolism Olivary Nucleus - physiology Patch-Clamp Techniques - methods Pons - drug effects Pons - physiology Presynaptic Terminals - metabolism Presynaptic Terminals - physiology Rats Rats, Sprague-Dawley Receptor Cross-Talk - drug effects Receptor Cross-Talk - physiology Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors Receptors, N-Methyl-D-Aspartate - physiology spillover Synaptic Transmission - drug effects Synaptic Transmission - physiology Vertebrates: nervous system and sense organs |
title | Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glutamatergic%20inputs%20and%20glutamate-releasing%20immature%20inhibitory%20inputs%20activate%20a%20shared%20postsynaptic%20receptor%20population%20in%20lateral%20superior%20olive&rft.jtitle=Neuroscience&rft.au=Alamilla,%20J&rft.date=2011-11-24&rft.volume=196&rft.spage=285&rft.epage=296&rft.pages=285-296&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/j.neuroscience.2011.08.060&rft_dat=%3Cproquest_pubme%3E898838904%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c603t-fe183efd04219028fa179bf5cbb4c2c92a48b7b8279b7740c5442cd9a8ea12883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=898838904&rft_id=info:pmid/21907763&rfr_iscdi=true |