Loading…

Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans

Willow bark extract (WBE) is listed in the European Pharmacopoeia and has been traditionally used for treating fever, pain, and inflammation. Recent studies have demonstrated its clinical usefulness. This study investigated the antioxidative effects of WBE in human umbilical vein endothelial cells (...

Full description

Saved in:
Bibliographic Details
Published in:Free radical biology & medicine 2013-12, Vol.65, p.1506-1515
Main Authors: Ishikado, Atsushi, Sono, Yoko, Matsumoto, Motonobu, Robida-Stubbs, Stacey, Okuno, Aya, Goto, Masashi, King, George L, Keith Blackwell, T, Makino, Taketoshi
Format: Article
Language:English
Subjects:
DNA
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c519t-d672b2be22ae523ca708dcae2b6805c2f0517dfa2a9fd45a54ef4f61af18f47e3
cites cdi_FETCH-LOGICAL-c519t-d672b2be22ae523ca708dcae2b6805c2f0517dfa2a9fd45a54ef4f61af18f47e3
container_end_page 1515
container_issue
container_start_page 1506
container_title Free radical biology & medicine
container_volume 65
creator Ishikado, Atsushi
Sono, Yoko
Matsumoto, Motonobu
Robida-Stubbs, Stacey
Okuno, Aya
Goto, Masashi
King, George L
Keith Blackwell, T
Makino, Taketoshi
description Willow bark extract (WBE) is listed in the European Pharmacopoeia and has been traditionally used for treating fever, pain, and inflammation. Recent studies have demonstrated its clinical usefulness. This study investigated the antioxidative effects of WBE in human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans. WBE prevented oxidative-stress-induced cytotoxicity of HUVECs and death of C. elegans. WBE dose-dependently increased mRNA and protein expression levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) target genes heme oxygenase-1, γ-glutamylcysteine ligase modifier and catalytic subunits, and p62 and intracellular glutathione (GSH) in HUVECs. In the nematode C. elegans, WBE increased the expression of the gcs-1::green fluorescent protein reporter, a well-characterized target of the Nrf2 ortholog SKN-1, in a manner that was SKN-1-dependent. WBE increased intranuclear expression and DNA binding of Nrf2 and the activity of an antioxidant response element (ARE) reporter plasmid in HUVECs. WBE-induced expression of Nrf2-regulated genes and increased GSH levels in HUVECs were reduced by Nrf2 and p38 small interfering (si) RNAs and by the p38-specific inhibitor SB203580. Nrf2 siRNA reduced the cytoprotective effect of WBE against oxidative stress in HUVECs. Salicin, a major anti-inflammatory ingredient of WBE, failed to activate ARE–luciferase activity, whereas a salicin-free WBE fraction showed intensive activity. WBE induced antioxidant enzymes and prevented oxidative stress through activation of Nrf2 independent of salicin, providing a new potential explanation for the clinical usefulness of WBE.
doi_str_mv 10.1016/j.freeradbiomed.2012.12.006
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3800243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1467065168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-d672b2be22ae523ca708dcae2b6805c2f0517dfa2a9fd45a54ef4f61af18f47e3</originalsourceid><addsrcrecordid>eNpVkduKFDEQhoMo7rj6Chrwxpsec-h09yAIy-AJFr3QxctQnVSmM2Y6a9I97vo4PqmZnXVxoaBC6q-vkvoJecnZkjPevN4uXUJMYHsfd2iXgnGxLMFY84AseNfKqlar5iFZsG7FK9XVqxPyJOctY6xWsntMToQUbcvrZkH-fPchxF-0h_SD4tWUwEzUjyYhZMwUxsnHK29Lpjj-vt7d3Fma0M6mnG9qk98jzVPCnOk0pDhvBlowfl8qcaTR0c_JiUKle8hmDpAKy8ZpwOAhUIMhHKlrwDGmAXrrJ58pBtzAmJ-SRw5Cxme3-ZRcvH_3bf2xOv_y4dP67Lwyiq-myjat6EWPQgAqIQ20rLMGUPRNx5QRjineWgcCVs7WClSNrnYNB8c7V7coT8nbI_dy7steDY5lG0FfJr-DdK0jeH2_MvpBb-Jey44xUcsCeHULSPHnjHnSO58Pv4MR45x1WXjLGsWbrkjfHKUmxZwTursxnOmDy3qr77msDy7rEsXl0v38_5fe9f6ztQheHAUOooZN8llffC0ExRiXrZJS_gUjFriw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467065168</pqid></control><display><type>article</type><title>Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans</title><source>ScienceDirect Freedom Collection</source><creator>Ishikado, Atsushi ; Sono, Yoko ; Matsumoto, Motonobu ; Robida-Stubbs, Stacey ; Okuno, Aya ; Goto, Masashi ; King, George L ; Keith Blackwell, T ; Makino, Taketoshi</creator><creatorcontrib>Ishikado, Atsushi ; Sono, Yoko ; Matsumoto, Motonobu ; Robida-Stubbs, Stacey ; Okuno, Aya ; Goto, Masashi ; King, George L ; Keith Blackwell, T ; Makino, Taketoshi</creatorcontrib><description>Willow bark extract (WBE) is listed in the European Pharmacopoeia and has been traditionally used for treating fever, pain, and inflammation. Recent studies have demonstrated its clinical usefulness. This study investigated the antioxidative effects of WBE in human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans. WBE prevented oxidative-stress-induced cytotoxicity of HUVECs and death of C. elegans. WBE dose-dependently increased mRNA and protein expression levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) target genes heme oxygenase-1, γ-glutamylcysteine ligase modifier and catalytic subunits, and p62 and intracellular glutathione (GSH) in HUVECs. In the nematode C. elegans, WBE increased the expression of the gcs-1::green fluorescent protein reporter, a well-characterized target of the Nrf2 ortholog SKN-1, in a manner that was SKN-1-dependent. WBE increased intranuclear expression and DNA binding of Nrf2 and the activity of an antioxidant response element (ARE) reporter plasmid in HUVECs. WBE-induced expression of Nrf2-regulated genes and increased GSH levels in HUVECs were reduced by Nrf2 and p38 small interfering (si) RNAs and by the p38-specific inhibitor SB203580. Nrf2 siRNA reduced the cytoprotective effect of WBE against oxidative stress in HUVECs. Salicin, a major anti-inflammatory ingredient of WBE, failed to activate ARE–luciferase activity, whereas a salicin-free WBE fraction showed intensive activity. WBE induced antioxidant enzymes and prevented oxidative stress through activation of Nrf2 independent of salicin, providing a new potential explanation for the clinical usefulness of WBE.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2012.12.006</identifier><identifier>PMID: 23277146</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; antioxidant activity ; Antioxidant Response Elements - genetics ; Antioxidants ; bark ; Benzyl Alcohols - pharmacology ; Caenorhabditis elegans ; Caenorhabditis elegans - enzymology ; Caenorhabditis elegans Proteins - biosynthesis ; Caenorhabditis elegans Proteins - genetics ; Carboxylic Ester Hydrolases - metabolism ; Cells, Cultured ; Cyclooxygenase Inhibitors - pharmacology ; cytotoxicity ; death ; DNA ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - genetics ; Endothelial Cells - enzymology ; Enzyme Activation ; Enzyme Inhibitors - pharmacology ; fluorescent proteins ; gene expression ; genes ; Glucosides - pharmacology ; Glutamate-Cysteine Ligase - biosynthesis ; Glutamate-Cysteine Ligase - genetics ; glutathione ; Glutathione - biosynthesis ; Glutathione - genetics ; heme oxygenase (biliverdin-producing) ; Heme Oxygenase-1 - biosynthesis ; Heme Oxygenase-1 - genetics ; human umbilical vein endothelial cells ; Human Umbilical Vein Endothelial Cells - enzymology ; Imidazoles - pharmacology ; inflammation ; messenger RNA ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; oxidative stress ; Oxidative Stress - drug effects ; p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors ; p38 Mitogen-Activated Protein Kinases - genetics ; Plant Bark - chemistry ; Plant Extracts - pharmacology ; protein subunits ; protein synthesis ; Proto-Oncogene Proteins c-myc - biosynthesis ; Proto-Oncogene Proteins c-myc - genetics ; Pyridines - pharmacology ; RNA Interference ; RNA, Messenger - biosynthesis ; RNA, Small Interfering ; Salix ; Salix - chemistry ; small interfering RNA ; Transcription Factors - biosynthesis ; Transcription Factors - genetics</subject><ispartof>Free radical biology &amp; medicine, 2013-12, Vol.65, p.1506-1515</ispartof><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Ellsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-d672b2be22ae523ca708dcae2b6805c2f0517dfa2a9fd45a54ef4f61af18f47e3</citedby><cites>FETCH-LOGICAL-c519t-d672b2be22ae523ca708dcae2b6805c2f0517dfa2a9fd45a54ef4f61af18f47e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23277146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishikado, Atsushi</creatorcontrib><creatorcontrib>Sono, Yoko</creatorcontrib><creatorcontrib>Matsumoto, Motonobu</creatorcontrib><creatorcontrib>Robida-Stubbs, Stacey</creatorcontrib><creatorcontrib>Okuno, Aya</creatorcontrib><creatorcontrib>Goto, Masashi</creatorcontrib><creatorcontrib>King, George L</creatorcontrib><creatorcontrib>Keith Blackwell, T</creatorcontrib><creatorcontrib>Makino, Taketoshi</creatorcontrib><title>Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Willow bark extract (WBE) is listed in the European Pharmacopoeia and has been traditionally used for treating fever, pain, and inflammation. Recent studies have demonstrated its clinical usefulness. This study investigated the antioxidative effects of WBE in human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans. WBE prevented oxidative-stress-induced cytotoxicity of HUVECs and death of C. elegans. WBE dose-dependently increased mRNA and protein expression levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) target genes heme oxygenase-1, γ-glutamylcysteine ligase modifier and catalytic subunits, and p62 and intracellular glutathione (GSH) in HUVECs. In the nematode C. elegans, WBE increased the expression of the gcs-1::green fluorescent protein reporter, a well-characterized target of the Nrf2 ortholog SKN-1, in a manner that was SKN-1-dependent. WBE increased intranuclear expression and DNA binding of Nrf2 and the activity of an antioxidant response element (ARE) reporter plasmid in HUVECs. WBE-induced expression of Nrf2-regulated genes and increased GSH levels in HUVECs were reduced by Nrf2 and p38 small interfering (si) RNAs and by the p38-specific inhibitor SB203580. Nrf2 siRNA reduced the cytoprotective effect of WBE against oxidative stress in HUVECs. Salicin, a major anti-inflammatory ingredient of WBE, failed to activate ARE–luciferase activity, whereas a salicin-free WBE fraction showed intensive activity. WBE induced antioxidant enzymes and prevented oxidative stress through activation of Nrf2 independent of salicin, providing a new potential explanation for the clinical usefulness of WBE.</description><subject>Animals</subject><subject>antioxidant activity</subject><subject>Antioxidant Response Elements - genetics</subject><subject>Antioxidants</subject><subject>bark</subject><subject>Benzyl Alcohols - pharmacology</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - enzymology</subject><subject>Caenorhabditis elegans Proteins - biosynthesis</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Carboxylic Ester Hydrolases - metabolism</subject><subject>Cells, Cultured</subject><subject>Cyclooxygenase Inhibitors - pharmacology</subject><subject>cytotoxicity</subject><subject>death</subject><subject>DNA</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Endothelial Cells - enzymology</subject><subject>Enzyme Activation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>fluorescent proteins</subject><subject>gene expression</subject><subject>genes</subject><subject>Glucosides - pharmacology</subject><subject>Glutamate-Cysteine Ligase - biosynthesis</subject><subject>Glutamate-Cysteine Ligase - genetics</subject><subject>glutathione</subject><subject>Glutathione - biosynthesis</subject><subject>Glutathione - genetics</subject><subject>heme oxygenase (biliverdin-producing)</subject><subject>Heme Oxygenase-1 - biosynthesis</subject><subject>Heme Oxygenase-1 - genetics</subject><subject>human umbilical vein endothelial cells</subject><subject>Human Umbilical Vein Endothelial Cells - enzymology</subject><subject>Imidazoles - pharmacology</subject><subject>inflammation</subject><subject>messenger RNA</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors</subject><subject>p38 Mitogen-Activated Protein Kinases - genetics</subject><subject>Plant Bark - chemistry</subject><subject>Plant Extracts - pharmacology</subject><subject>protein subunits</subject><subject>protein synthesis</subject><subject>Proto-Oncogene Proteins c-myc - biosynthesis</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Pyridines - pharmacology</subject><subject>RNA Interference</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Small Interfering</subject><subject>Salix</subject><subject>Salix - chemistry</subject><subject>small interfering RNA</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - genetics</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkduKFDEQhoMo7rj6Chrwxpsec-h09yAIy-AJFr3QxctQnVSmM2Y6a9I97vo4PqmZnXVxoaBC6q-vkvoJecnZkjPevN4uXUJMYHsfd2iXgnGxLMFY84AseNfKqlar5iFZsG7FK9XVqxPyJOctY6xWsntMToQUbcvrZkH-fPchxF-0h_SD4tWUwEzUjyYhZMwUxsnHK29Lpjj-vt7d3Fma0M6mnG9qk98jzVPCnOk0pDhvBlowfl8qcaTR0c_JiUKle8hmDpAKy8ZpwOAhUIMhHKlrwDGmAXrrJ58pBtzAmJ-SRw5Cxme3-ZRcvH_3bf2xOv_y4dP67Lwyiq-myjat6EWPQgAqIQ20rLMGUPRNx5QRjineWgcCVs7WClSNrnYNB8c7V7coT8nbI_dy7steDY5lG0FfJr-DdK0jeH2_MvpBb-Jey44xUcsCeHULSPHnjHnSO58Pv4MR45x1WXjLGsWbrkjfHKUmxZwTursxnOmDy3qr77msDy7rEsXl0v38_5fe9f6ztQheHAUOooZN8llffC0ExRiXrZJS_gUjFriw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Ishikado, Atsushi</creator><creator>Sono, Yoko</creator><creator>Matsumoto, Motonobu</creator><creator>Robida-Stubbs, Stacey</creator><creator>Okuno, Aya</creator><creator>Goto, Masashi</creator><creator>King, George L</creator><creator>Keith Blackwell, T</creator><creator>Makino, Taketoshi</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans</title><author>Ishikado, Atsushi ; Sono, Yoko ; Matsumoto, Motonobu ; Robida-Stubbs, Stacey ; Okuno, Aya ; Goto, Masashi ; King, George L ; Keith Blackwell, T ; Makino, Taketoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-d672b2be22ae523ca708dcae2b6805c2f0517dfa2a9fd45a54ef4f61af18f47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>antioxidant activity</topic><topic>Antioxidant Response Elements - genetics</topic><topic>Antioxidants</topic><topic>bark</topic><topic>Benzyl Alcohols - pharmacology</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - enzymology</topic><topic>Caenorhabditis elegans Proteins - biosynthesis</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Carboxylic Ester Hydrolases - metabolism</topic><topic>Cells, Cultured</topic><topic>Cyclooxygenase Inhibitors - pharmacology</topic><topic>cytotoxicity</topic><topic>death</topic><topic>DNA</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Endothelial Cells - enzymology</topic><topic>Enzyme Activation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>fluorescent proteins</topic><topic>gene expression</topic><topic>genes</topic><topic>Glucosides - pharmacology</topic><topic>Glutamate-Cysteine Ligase - biosynthesis</topic><topic>Glutamate-Cysteine Ligase - genetics</topic><topic>glutathione</topic><topic>Glutathione - biosynthesis</topic><topic>Glutathione - genetics</topic><topic>heme oxygenase (biliverdin-producing)</topic><topic>Heme Oxygenase-1 - biosynthesis</topic><topic>Heme Oxygenase-1 - genetics</topic><topic>human umbilical vein endothelial cells</topic><topic>Human Umbilical Vein Endothelial Cells - enzymology</topic><topic>Imidazoles - pharmacology</topic><topic>inflammation</topic><topic>messenger RNA</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors</topic><topic>p38 Mitogen-Activated Protein Kinases - genetics</topic><topic>Plant Bark - chemistry</topic><topic>Plant Extracts - pharmacology</topic><topic>protein subunits</topic><topic>protein synthesis</topic><topic>Proto-Oncogene Proteins c-myc - biosynthesis</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Pyridines - pharmacology</topic><topic>RNA Interference</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Small Interfering</topic><topic>Salix</topic><topic>Salix - chemistry</topic><topic>small interfering RNA</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishikado, Atsushi</creatorcontrib><creatorcontrib>Sono, Yoko</creatorcontrib><creatorcontrib>Matsumoto, Motonobu</creatorcontrib><creatorcontrib>Robida-Stubbs, Stacey</creatorcontrib><creatorcontrib>Okuno, Aya</creatorcontrib><creatorcontrib>Goto, Masashi</creatorcontrib><creatorcontrib>King, George L</creatorcontrib><creatorcontrib>Keith Blackwell, T</creatorcontrib><creatorcontrib>Makino, Taketoshi</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishikado, Atsushi</au><au>Sono, Yoko</au><au>Matsumoto, Motonobu</au><au>Robida-Stubbs, Stacey</au><au>Okuno, Aya</au><au>Goto, Masashi</au><au>King, George L</au><au>Keith Blackwell, T</au><au>Makino, Taketoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>65</volume><spage>1506</spage><epage>1515</epage><pages>1506-1515</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Willow bark extract (WBE) is listed in the European Pharmacopoeia and has been traditionally used for treating fever, pain, and inflammation. Recent studies have demonstrated its clinical usefulness. This study investigated the antioxidative effects of WBE in human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans. WBE prevented oxidative-stress-induced cytotoxicity of HUVECs and death of C. elegans. WBE dose-dependently increased mRNA and protein expression levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) target genes heme oxygenase-1, γ-glutamylcysteine ligase modifier and catalytic subunits, and p62 and intracellular glutathione (GSH) in HUVECs. In the nematode C. elegans, WBE increased the expression of the gcs-1::green fluorescent protein reporter, a well-characterized target of the Nrf2 ortholog SKN-1, in a manner that was SKN-1-dependent. WBE increased intranuclear expression and DNA binding of Nrf2 and the activity of an antioxidant response element (ARE) reporter plasmid in HUVECs. WBE-induced expression of Nrf2-regulated genes and increased GSH levels in HUVECs were reduced by Nrf2 and p38 small interfering (si) RNAs and by the p38-specific inhibitor SB203580. Nrf2 siRNA reduced the cytoprotective effect of WBE against oxidative stress in HUVECs. Salicin, a major anti-inflammatory ingredient of WBE, failed to activate ARE–luciferase activity, whereas a salicin-free WBE fraction showed intensive activity. WBE induced antioxidant enzymes and prevented oxidative stress through activation of Nrf2 independent of salicin, providing a new potential explanation for the clinical usefulness of WBE.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23277146</pmid><doi>10.1016/j.freeradbiomed.2012.12.006</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2013-12, Vol.65, p.1506-1515
issn 0891-5849
1873-4596
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3800243
source ScienceDirect Freedom Collection
subjects Animals
antioxidant activity
Antioxidant Response Elements - genetics
Antioxidants
bark
Benzyl Alcohols - pharmacology
Caenorhabditis elegans
Caenorhabditis elegans - enzymology
Caenorhabditis elegans Proteins - biosynthesis
Caenorhabditis elegans Proteins - genetics
Carboxylic Ester Hydrolases - metabolism
Cells, Cultured
Cyclooxygenase Inhibitors - pharmacology
cytotoxicity
death
DNA
DNA-Binding Proteins - biosynthesis
DNA-Binding Proteins - genetics
Endothelial Cells - enzymology
Enzyme Activation
Enzyme Inhibitors - pharmacology
fluorescent proteins
gene expression
genes
Glucosides - pharmacology
Glutamate-Cysteine Ligase - biosynthesis
Glutamate-Cysteine Ligase - genetics
glutathione
Glutathione - biosynthesis
Glutathione - genetics
heme oxygenase (biliverdin-producing)
Heme Oxygenase-1 - biosynthesis
Heme Oxygenase-1 - genetics
human umbilical vein endothelial cells
Human Umbilical Vein Endothelial Cells - enzymology
Imidazoles - pharmacology
inflammation
messenger RNA
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
oxidative stress
Oxidative Stress - drug effects
p38 Mitogen-Activated Protein Kinases - antagonists & inhibitors
p38 Mitogen-Activated Protein Kinases - genetics
Plant Bark - chemistry
Plant Extracts - pharmacology
protein subunits
protein synthesis
Proto-Oncogene Proteins c-myc - biosynthesis
Proto-Oncogene Proteins c-myc - genetics
Pyridines - pharmacology
RNA Interference
RNA, Messenger - biosynthesis
RNA, Small Interfering
Salix
Salix - chemistry
small interfering RNA
Transcription Factors - biosynthesis
Transcription Factors - genetics
title Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Willow%20bark%20extract%20increases%20antioxidant%20enzymes%20and%20reduces%20oxidative%20stress%20through%20activation%20of%20Nrf2%20in%20vascular%20endothelial%20cells%20and%20Caenorhabditis%20elegans&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Ishikado,%20Atsushi&rft.date=2013-12-01&rft.volume=65&rft.spage=1506&rft.epage=1515&rft.pages=1506-1515&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2012.12.006&rft_dat=%3Cproquest_pubme%3E1467065168%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-d672b2be22ae523ca708dcae2b6805c2f0517dfa2a9fd45a54ef4f61af18f47e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1467065168&rft_id=info:pmid/23277146&rfr_iscdi=true