Loading…
MicroRNA-23a promotes myelination in the central nervous system
Demyelinating disorders including leukodystrophies are devastating conditions that are still in need of better understanding, and both oligodendrocyte differentiation and myelin synthesis pathways are potential avenues for developing treatment. Overexpression of lamin B1 leads to leukodystrophy char...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2013-10, Vol.110 (43), p.17468-17473 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c591t-816cde3d0475410deca990937be802775b1023206577cc40b29cb9d33649b0543 |
---|---|
cites | cdi_FETCH-LOGICAL-c591t-816cde3d0475410deca990937be802775b1023206577cc40b29cb9d33649b0543 |
container_end_page | 17473 |
container_issue | 43 |
container_start_page | 17468 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Lin, Shu-Ting Huang, Yong Zhang, Luoying Heng, Mary Y. Ptáček, Louis J. Fu, Ying-Hui |
description | Demyelinating disorders including leukodystrophies are devastating conditions that are still in need of better understanding, and both oligodendrocyte differentiation and myelin synthesis pathways are potential avenues for developing treatment. Overexpression of lamin B1 leads to leukodystrophy characterized by demyelination of the central nervous system, and microRNA-23 (miR-23) was found to suppress lamin B1 and enhance oligodendrocyte differentiation in vitro. Here, we demonstrated that miR-23a –overexpressing mice have increased myelin thickness, providing in vivo evidence that miR-23a enhances both oligodendrocyte differentiation and myelin synthesis. Using this mouse model, we explored possible miR-23a targets and revealed that the phosphatase and tensin homologue/phosphatidylinositol trisphosphate kinase/Akt/mammalian target of rapamycin pathway is modulated by miR-23a . Additionally, a long noncoding RNA, 2700046G09Rik , was identified as a miR-23a target and modulates phosphatase and tensin homologue itself in a miR-23a –dependent manner. The data presented here imply a unique role for miR-23a in the coordination of proteins and noncoding RNAs in generating and maintaining healthy myelin. |
doi_str_mv | 10.1073/pnas.1317182110 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3808585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23753256</jstor_id><sourcerecordid>23753256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-816cde3d0475410deca990937be802775b1023206577cc40b29cb9d33649b0543</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EosvCmRMQiQuXtDP-9gVUVXxJBSSgZ8txvG1WSby1s5X2v8fRLlvgwsmH-c3ze_MIeY5wiqDY2WZ0-RQZKtQUER6QBYLBWnIDD8kCgKpac8pPyJOc1wBghIbH5IRyBBSULsi7L51P8fvX85oyV21SHOIUcjXsQt-NburiWHVjNd2EyodxSq6vxpDu4jZXeZenMDwlj1auz-HZ4V2Sqw_vf158qi-_ffx8cX5Ze2FwqjVK3wbWAlei_N0G74wBw1QTdDGpRINAGQUplPKeQ0ONb0zLWEnSgOBsSd7udTfbZgjtwYzdpG5waWej6-zfk7G7sdfxzjINWmhRBN4cBFK83YY82aHLPvS9G0OJY5FLzSTIctX_o5xrIbmCgr7-B13HbRrLJWZKSm2Azn-f7aly6pxTWB19I9i5Rzv3aO97LBsv_4x75H8XV4DqAMybR7mix5lFNYdZkhd7ZJ2nmO4lmBKMClnmr_bzlYvWXacu26sfFFACIAdZfP8C7M-0AA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1446689025</pqid></control><display><type>article</type><title>MicroRNA-23a promotes myelination in the central nervous system</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><creator>Lin, Shu-Ting ; Huang, Yong ; Zhang, Luoying ; Heng, Mary Y. ; Ptáček, Louis J. ; Fu, Ying-Hui</creator><creatorcontrib>Lin, Shu-Ting ; Huang, Yong ; Zhang, Luoying ; Heng, Mary Y. ; Ptáček, Louis J. ; Fu, Ying-Hui</creatorcontrib><description>Demyelinating disorders including leukodystrophies are devastating conditions that are still in need of better understanding, and both oligodendrocyte differentiation and myelin synthesis pathways are potential avenues for developing treatment. Overexpression of lamin B1 leads to leukodystrophy characterized by demyelination of the central nervous system, and microRNA-23 (miR-23) was found to suppress lamin B1 and enhance oligodendrocyte differentiation in vitro. Here, we demonstrated that miR-23a –overexpressing mice have increased myelin thickness, providing in vivo evidence that miR-23a enhances both oligodendrocyte differentiation and myelin synthesis. Using this mouse model, we explored possible miR-23a targets and revealed that the phosphatase and tensin homologue/phosphatidylinositol trisphosphate kinase/Akt/mammalian target of rapamycin pathway is modulated by miR-23a . Additionally, a long noncoding RNA, 2700046G09Rik , was identified as a miR-23a target and modulates phosphatase and tensin homologue itself in a miR-23a –dependent manner. The data presented here imply a unique role for miR-23a in the coordination of proteins and noncoding RNAs in generating and maintaining healthy myelin.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1317182110</identifier><identifier>PMID: 24101522</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Blotting, Western ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; Cells, Cultured ; Central nervous system ; Central Nervous System - metabolism ; Gene expression regulation ; Genes ; HEK293 Cells ; Humans ; Kinases ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; MicroRNA ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Microscopy, Electron ; Myelin ; Myelin Sheath - genetics ; Myelin Sheath - physiology ; Myelin Sheath - ultrastructure ; Myelination ; Nervous system ; Neurons ; Neuroscience ; Oligodendroglia ; Oligodendroglia - cytology ; Oligodendroglia - metabolism ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; PTEN Phosphohydrolase - genetics ; PTEN Phosphohydrolase - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Rodents ; Signal Transduction - genetics ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Transcriptome</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (43), p.17468-17473</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 22, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-816cde3d0475410deca990937be802775b1023206577cc40b29cb9d33649b0543</citedby><cites>FETCH-LOGICAL-c591t-816cde3d0475410deca990937be802775b1023206577cc40b29cb9d33649b0543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/43.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23753256$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23753256$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24101522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Shu-Ting</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Zhang, Luoying</creatorcontrib><creatorcontrib>Heng, Mary Y.</creatorcontrib><creatorcontrib>Ptáček, Louis J.</creatorcontrib><creatorcontrib>Fu, Ying-Hui</creatorcontrib><title>MicroRNA-23a promotes myelination in the central nervous system</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Demyelinating disorders including leukodystrophies are devastating conditions that are still in need of better understanding, and both oligodendrocyte differentiation and myelin synthesis pathways are potential avenues for developing treatment. Overexpression of lamin B1 leads to leukodystrophy characterized by demyelination of the central nervous system, and microRNA-23 (miR-23) was found to suppress lamin B1 and enhance oligodendrocyte differentiation in vitro. Here, we demonstrated that miR-23a –overexpressing mice have increased myelin thickness, providing in vivo evidence that miR-23a enhances both oligodendrocyte differentiation and myelin synthesis. Using this mouse model, we explored possible miR-23a targets and revealed that the phosphatase and tensin homologue/phosphatidylinositol trisphosphate kinase/Akt/mammalian target of rapamycin pathway is modulated by miR-23a . Additionally, a long noncoding RNA, 2700046G09Rik , was identified as a miR-23a target and modulates phosphatase and tensin homologue itself in a miR-23a –dependent manner. The data presented here imply a unique role for miR-23a in the coordination of proteins and noncoding RNAs in generating and maintaining healthy myelin.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Central Nervous System - metabolism</subject><subject>Gene expression regulation</subject><subject>Genes</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Kinases</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Microscopy, Electron</subject><subject>Myelin</subject><subject>Myelin Sheath - genetics</subject><subject>Myelin Sheath - physiology</subject><subject>Myelin Sheath - ultrastructure</subject><subject>Myelination</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Oligodendroglia</subject><subject>Oligodendroglia - cytology</subject><subject>Oligodendroglia - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>PTEN Phosphohydrolase - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction - genetics</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcriptome</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS0EosvCmRMQiQuXtDP-9gVUVXxJBSSgZ8txvG1WSby1s5X2v8fRLlvgwsmH-c3ze_MIeY5wiqDY2WZ0-RQZKtQUER6QBYLBWnIDD8kCgKpac8pPyJOc1wBghIbH5IRyBBSULsi7L51P8fvX85oyV21SHOIUcjXsQt-NburiWHVjNd2EyodxSq6vxpDu4jZXeZenMDwlj1auz-HZ4V2Sqw_vf158qi-_ffx8cX5Ze2FwqjVK3wbWAlei_N0G74wBw1QTdDGpRINAGQUplPKeQ0ONb0zLWEnSgOBsSd7udTfbZgjtwYzdpG5waWej6-zfk7G7sdfxzjINWmhRBN4cBFK83YY82aHLPvS9G0OJY5FLzSTIctX_o5xrIbmCgr7-B13HbRrLJWZKSm2Azn-f7aly6pxTWB19I9i5Rzv3aO97LBsv_4x75H8XV4DqAMybR7mix5lFNYdZkhd7ZJ2nmO4lmBKMClnmr_bzlYvWXacu26sfFFACIAdZfP8C7M-0AA</recordid><startdate>20131022</startdate><enddate>20131022</enddate><creator>Lin, Shu-Ting</creator><creator>Huang, Yong</creator><creator>Zhang, Luoying</creator><creator>Heng, Mary Y.</creator><creator>Ptáček, Louis J.</creator><creator>Fu, Ying-Hui</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131022</creationdate><title>MicroRNA-23a promotes myelination in the central nervous system</title><author>Lin, Shu-Ting ; Huang, Yong ; Zhang, Luoying ; Heng, Mary Y. ; Ptáček, Louis J. ; Fu, Ying-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-816cde3d0475410deca990937be802775b1023206577cc40b29cb9d33649b0543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Central Nervous System - metabolism</topic><topic>Gene expression regulation</topic><topic>Genes</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Kinases</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Microscopy, Electron</topic><topic>Myelin</topic><topic>Myelin Sheath - genetics</topic><topic>Myelin Sheath - physiology</topic><topic>Myelin Sheath - ultrastructure</topic><topic>Myelination</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Oligodendroglia</topic><topic>Oligodendroglia - cytology</topic><topic>Oligodendroglia - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>PTEN Phosphohydrolase - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction - genetics</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shu-Ting</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Zhang, Luoying</creatorcontrib><creatorcontrib>Heng, Mary Y.</creatorcontrib><creatorcontrib>Ptáček, Louis J.</creatorcontrib><creatorcontrib>Fu, Ying-Hui</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shu-Ting</au><au>Huang, Yong</au><au>Zhang, Luoying</au><au>Heng, Mary Y.</au><au>Ptáček, Louis J.</au><au>Fu, Ying-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-23a promotes myelination in the central nervous system</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-10-22</date><risdate>2013</risdate><volume>110</volume><issue>43</issue><spage>17468</spage><epage>17473</epage><pages>17468-17473</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Demyelinating disorders including leukodystrophies are devastating conditions that are still in need of better understanding, and both oligodendrocyte differentiation and myelin synthesis pathways are potential avenues for developing treatment. Overexpression of lamin B1 leads to leukodystrophy characterized by demyelination of the central nervous system, and microRNA-23 (miR-23) was found to suppress lamin B1 and enhance oligodendrocyte differentiation in vitro. Here, we demonstrated that miR-23a –overexpressing mice have increased myelin thickness, providing in vivo evidence that miR-23a enhances both oligodendrocyte differentiation and myelin synthesis. Using this mouse model, we explored possible miR-23a targets and revealed that the phosphatase and tensin homologue/phosphatidylinositol trisphosphate kinase/Akt/mammalian target of rapamycin pathway is modulated by miR-23a . Additionally, a long noncoding RNA, 2700046G09Rik , was identified as a miR-23a target and modulates phosphatase and tensin homologue itself in a miR-23a –dependent manner. The data presented here imply a unique role for miR-23a in the coordination of proteins and noncoding RNAs in generating and maintaining healthy myelin.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24101522</pmid><doi>10.1073/pnas.1317182110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (43), p.17468-17473 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3808585 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection【Remote access available】 |
subjects | Animals Biological Sciences Blotting, Western Cell Differentiation - genetics Cell Differentiation - physiology Cells, Cultured Central nervous system Central Nervous System - metabolism Gene expression regulation Genes HEK293 Cells Humans Kinases Mice Mice, Inbred C57BL Mice, Transgenic MicroRNA MicroRNAs - genetics MicroRNAs - metabolism Microscopy, Electron Myelin Myelin Sheath - genetics Myelin Sheath - physiology Myelin Sheath - ultrastructure Myelination Nervous system Neurons Neuroscience Oligodendroglia Oligodendroglia - cytology Oligodendroglia - metabolism Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism PTEN Phosphohydrolase - genetics PTEN Phosphohydrolase - metabolism Reverse Transcriptase Polymerase Chain Reaction Ribonucleic acid RNA RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism Rodents Signal Transduction - genetics TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Transcriptome |
title | MicroRNA-23a promotes myelination in the central nervous system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-23a%20promotes%20myelination%20in%20the%20central%20nervous%20system&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lin,%20Shu-Ting&rft.date=2013-10-22&rft.volume=110&rft.issue=43&rft.spage=17468&rft.epage=17473&rft.pages=17468-17473&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1317182110&rft_dat=%3Cjstor_pubme%3E23753256%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-816cde3d0475410deca990937be802775b1023206577cc40b29cb9d33649b0543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1446689025&rft_id=info:pmid/24101522&rft_jstor_id=23753256&rfr_iscdi=true |