Loading…
An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data
Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heteroge...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2013-01, Vol.64, p.240-256 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c625t-8bf4ba9d3161975b9a891675b79f71c048128a2d7ad290b5c5e5ce12c7dc92aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c625t-8bf4ba9d3161975b9a891675b79f71c048128a2d7ad290b5c5e5ce12c7dc92aa3 |
container_end_page | 256 |
container_issue | |
container_start_page | 240 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 64 |
creator | Satterthwaite, Theodore D. Elliott, Mark A. Gerraty, Raphael T. Ruparel, Kosha Loughead, James Calkins, Monica E. Eickhoff, Simon B. Hakonarson, Hakon Gur, Ruben C. Gur, Raquel E. Wolf, Daniel H. |
description | Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed.
► We describe spatial, temporal, and spectral features of rsfc-MRI motion artifact. ► We show how these artifact features impact preprocessing choices. ► We systematically evaluate different confound regression and filtering techniques. ► Our optimized preprocessing approach minimizes rsfc-MRI motion artifact. |
doi_str_mv | 10.1016/j.neuroimage.2012.08.052 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3811142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811912008609</els_id><sourcerecordid>3396565721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625t-8bf4ba9d3161975b9a891675b79f71c048128a2d7ad290b5c5e5ce12c7dc92aa3</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEoqXwCsgSQuKSYHvXcXxBKhX_pEpc4Gw5znjrJbEX21nUh-FdmXS3LXDpwfKM_JtPM-OvqgijDaOsfbttAswp-slsoOGU8YZ2DRX8UXXKqBK1EpI_XmKxqjvG1En1LOctpVSxdfe0OuFc8RbPafX7PBA_7VLcw0BcMhP8iukHcTERG4OLcxhIgk2CnH0MxGDq_Fgg-bC5pUqKI4mOTLHcMKl4Z2whPpByBWSXAPXtooA1yKFYwbDOxRQgbg52qTPjohUAk70v12QwxTyvnjgzZnhxvM-q7x8_fLv4XF9-_fTl4vyyti0Xpe56t-6NGlasZUqKXplOsRYDqZxklq47xjvDB2kGrmgvrABhgXErB6u4Mauz6t1Bdzf3EwwWcCYz6l3CDadrHY3X_74Ef6U3ca9XuF225ijw5iiQ4s8Z59OTzxbG0QSIc9ZMUCpbyjv5MMo5XbWyVS2ir_5Dt3FOuKlFUHDKmaIMqe5A2RRzTuDu-mZUL3bRW31vF73YRdNOo12w9OXfc98V3voDgddHwGRrRjRIsD7fc5IxKm96eH_gAH9p7yHpbD0EC4NP-KN6iP7hbv4ApRHn1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552021901</pqid></control><display><type>article</type><title>An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data</title><source>ScienceDirect Journals</source><creator>Satterthwaite, Theodore D. ; Elliott, Mark A. ; Gerraty, Raphael T. ; Ruparel, Kosha ; Loughead, James ; Calkins, Monica E. ; Eickhoff, Simon B. ; Hakonarson, Hakon ; Gur, Ruben C. ; Gur, Raquel E. ; Wolf, Daniel H.</creator><creatorcontrib>Satterthwaite, Theodore D. ; Elliott, Mark A. ; Gerraty, Raphael T. ; Ruparel, Kosha ; Loughead, James ; Calkins, Monica E. ; Eickhoff, Simon B. ; Hakonarson, Hakon ; Gur, Ruben C. ; Gur, Raquel E. ; Wolf, Daniel H.</creatorcontrib><description>Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed.
► We describe spatial, temporal, and spectral features of rsfc-MRI motion artifact. ► We show how these artifact features impact preprocessing choices. ► We systematically evaluate different confound regression and filtering techniques. ► Our optimized preprocessing approach minimizes rsfc-MRI motion artifact.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2012.08.052</identifier><identifier>PMID: 22926292</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adolescence ; Adolescent ; Age ; Algorithms ; Biological and medical sciences ; Brain - physiology ; Brain research ; Child ; Connectivity ; Connectome ; Connectome - methods ; Data Interpretation, Statistical ; Development ; Female ; fMRI ; Fundamental and applied biological sciences. Psychology ; Head Movements - physiology ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Male ; Methods ; Motion ; Network ; Regression Analysis ; Reproducibility of Results ; Rest - physiology ; Resting-state ; Scanners ; Sensitivity and Specificity ; Studies ; Vertebrates: nervous system and sense organs ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2013-01, Vol.64, p.240-256</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 1, 2013</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c625t-8bf4ba9d3161975b9a891675b79f71c048128a2d7ad290b5c5e5ce12c7dc92aa3</citedby><cites>FETCH-LOGICAL-c625t-8bf4ba9d3161975b9a891675b79f71c048128a2d7ad290b5c5e5ce12c7dc92aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27110701$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22926292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Satterthwaite, Theodore D.</creatorcontrib><creatorcontrib>Elliott, Mark A.</creatorcontrib><creatorcontrib>Gerraty, Raphael T.</creatorcontrib><creatorcontrib>Ruparel, Kosha</creatorcontrib><creatorcontrib>Loughead, James</creatorcontrib><creatorcontrib>Calkins, Monica E.</creatorcontrib><creatorcontrib>Eickhoff, Simon B.</creatorcontrib><creatorcontrib>Hakonarson, Hakon</creatorcontrib><creatorcontrib>Gur, Ruben C.</creatorcontrib><creatorcontrib>Gur, Raquel E.</creatorcontrib><creatorcontrib>Wolf, Daniel H.</creatorcontrib><title>An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed.
► We describe spatial, temporal, and spectral features of rsfc-MRI motion artifact. ► We show how these artifact features impact preprocessing choices. ► We systematically evaluate different confound regression and filtering techniques. ► Our optimized preprocessing approach minimizes rsfc-MRI motion artifact.</description><subject>Adolescence</subject><subject>Adolescent</subject><subject>Age</subject><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Brain - physiology</subject><subject>Brain research</subject><subject>Child</subject><subject>Connectivity</subject><subject>Connectome</subject><subject>Connectome - methods</subject><subject>Data Interpretation, Statistical</subject><subject>Development</subject><subject>Female</subject><subject>fMRI</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Head Movements - physiology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Methods</subject><subject>Motion</subject><subject>Network</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Rest - physiology</subject><subject>Resting-state</subject><subject>Scanners</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFks9u1DAQxiMEoqXwCsgSQuKSYHvXcXxBKhX_pEpc4Gw5znjrJbEX21nUh-FdmXS3LXDpwfKM_JtPM-OvqgijDaOsfbttAswp-slsoOGU8YZ2DRX8UXXKqBK1EpI_XmKxqjvG1En1LOctpVSxdfe0OuFc8RbPafX7PBA_7VLcw0BcMhP8iukHcTERG4OLcxhIgk2CnH0MxGDq_Fgg-bC5pUqKI4mOTLHcMKl4Z2whPpByBWSXAPXtooA1yKFYwbDOxRQgbg52qTPjohUAk70v12QwxTyvnjgzZnhxvM-q7x8_fLv4XF9-_fTl4vyyti0Xpe56t-6NGlasZUqKXplOsRYDqZxklq47xjvDB2kGrmgvrABhgXErB6u4Mauz6t1Bdzf3EwwWcCYz6l3CDadrHY3X_74Ef6U3ca9XuF225ijw5iiQ4s8Z59OTzxbG0QSIc9ZMUCpbyjv5MMo5XbWyVS2ir_5Dt3FOuKlFUHDKmaIMqe5A2RRzTuDu-mZUL3bRW31vF73YRdNOo12w9OXfc98V3voDgddHwGRrRjRIsD7fc5IxKm96eH_gAH9p7yHpbD0EC4NP-KN6iP7hbv4ApRHn1Q</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Satterthwaite, Theodore D.</creator><creator>Elliott, Mark A.</creator><creator>Gerraty, Raphael T.</creator><creator>Ruparel, Kosha</creator><creator>Loughead, James</creator><creator>Calkins, Monica E.</creator><creator>Eickhoff, Simon B.</creator><creator>Hakonarson, Hakon</creator><creator>Gur, Ruben C.</creator><creator>Gur, Raquel E.</creator><creator>Wolf, Daniel H.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20130101</creationdate><title>An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data</title><author>Satterthwaite, Theodore D. ; Elliott, Mark A. ; Gerraty, Raphael T. ; Ruparel, Kosha ; Loughead, James ; Calkins, Monica E. ; Eickhoff, Simon B. ; Hakonarson, Hakon ; Gur, Ruben C. ; Gur, Raquel E. ; Wolf, Daniel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625t-8bf4ba9d3161975b9a891675b79f71c048128a2d7ad290b5c5e5ce12c7dc92aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adolescence</topic><topic>Adolescent</topic><topic>Age</topic><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Brain - physiology</topic><topic>Brain research</topic><topic>Child</topic><topic>Connectivity</topic><topic>Connectome</topic><topic>Connectome - methods</topic><topic>Data Interpretation, Statistical</topic><topic>Development</topic><topic>Female</topic><topic>fMRI</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Head Movements - physiology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Methods</topic><topic>Motion</topic><topic>Network</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Rest - physiology</topic><topic>Resting-state</topic><topic>Scanners</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satterthwaite, Theodore D.</creatorcontrib><creatorcontrib>Elliott, Mark A.</creatorcontrib><creatorcontrib>Gerraty, Raphael T.</creatorcontrib><creatorcontrib>Ruparel, Kosha</creatorcontrib><creatorcontrib>Loughead, James</creatorcontrib><creatorcontrib>Calkins, Monica E.</creatorcontrib><creatorcontrib>Eickhoff, Simon B.</creatorcontrib><creatorcontrib>Hakonarson, Hakon</creatorcontrib><creatorcontrib>Gur, Ruben C.</creatorcontrib><creatorcontrib>Gur, Raquel E.</creatorcontrib><creatorcontrib>Wolf, Daniel H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satterthwaite, Theodore D.</au><au>Elliott, Mark A.</au><au>Gerraty, Raphael T.</au><au>Ruparel, Kosha</au><au>Loughead, James</au><au>Calkins, Monica E.</au><au>Eickhoff, Simon B.</au><au>Hakonarson, Hakon</au><au>Gur, Ruben C.</au><au>Gur, Raquel E.</au><au>Wolf, Daniel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>64</volume><spage>240</spage><epage>256</epage><pages>240-256</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed.
► We describe spatial, temporal, and spectral features of rsfc-MRI motion artifact. ► We show how these artifact features impact preprocessing choices. ► We systematically evaluate different confound regression and filtering techniques. ► Our optimized preprocessing approach minimizes rsfc-MRI motion artifact.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>22926292</pmid><doi>10.1016/j.neuroimage.2012.08.052</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2013-01, Vol.64, p.240-256 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3811142 |
source | ScienceDirect Journals |
subjects | Adolescence Adolescent Age Algorithms Biological and medical sciences Brain - physiology Brain research Child Connectivity Connectome Connectome - methods Data Interpretation, Statistical Development Female fMRI Fundamental and applied biological sciences. Psychology Head Movements - physiology Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Methods Motion Network Regression Analysis Reproducibility of Results Rest - physiology Resting-state Scanners Sensitivity and Specificity Studies Vertebrates: nervous system and sense organs Young Adult |
title | An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20framework%20for%20confound%20regression%20and%20filtering%20for%20control%20of%20motion%20artifact%20in%20the%20preprocessing%20of%20resting-state%20functional%20connectivity%20data&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Satterthwaite,%20Theodore%20D.&rft.date=2013-01-01&rft.volume=64&rft.spage=240&rft.epage=256&rft.pages=240-256&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2012.08.052&rft_dat=%3Cproquest_pubme%3E3396565721%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c625t-8bf4ba9d3161975b9a891675b79f71c048128a2d7ad290b5c5e5ce12c7dc92aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552021901&rft_id=info:pmid/22926292&rfr_iscdi=true |