Loading…

α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway

Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular and molecular medicine 2012-02, Vol.16 (2), p.273-286
Main Authors: Kim, Hyunsoo, Kim, Han‐Jong, Lee, Kyunghee, Kim, Jin‐Man, Kim, Hee Sun, Kim, Jae‐Ryong, Ha, Chae‐Myeong, Choi, Young‐Keun, Lee, Sun Joo, Kim, Joon‐Young, Harris, Robert A., Jeong, Daewon, Lee, In‐Kyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523
cites cdi_FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523
container_end_page 286
container_issue 2
container_start_page 273
container_title Journal of cellular and molecular medicine
container_volume 16
creator Kim, Hyunsoo
Kim, Han‐Jong
Lee, Kyunghee
Kim, Jin‐Man
Kim, Hee Sun
Kim, Jae‐Ryong
Ha, Chae‐Myeong
Choi, Young‐Keun
Lee, Sun Joo
Kim, Joon‐Young
Harris, Robert A.
Jeong, Daewon
Lee, In‐Kyu
description Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role of mitochondrial dysfunction in the process of vascular calcification. This study investigated the effect of α‐lipoic acid (ALA), a naturally occurring antioxidant that improves mitochondrial function, on vascular calcification in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential and ATP production, the disruption of mitochondrial structural integrity and concurrently increased production of reactive oxygen species. These Pi‐induced functional and structural mitochondrial defects were accompanied by mitochondria‐dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol, subsequent activation of caspase‐9 and ‐3, and chromosomal DNA fragmentation. Intriguingly, ALA blocked the Pi‐induced VSMC apoptosis and calcification by recovery of mitochondrial function and intracellular redox status. Moreover, ALA inhibited Pi‐induced down‐regulation of cell survival signals through the binding of growth arrest‐specific gene 6 (Gas6) to its cognate receptor Axl and subsequent Akt activation, resulting in increased survival and decreased apoptosis. Finally, ALA significantly ameliorated vitamin D3‐induced aortic calcification and mitochondrial damage in mice. Collectively, the findings suggest ALA attenuates vascular calcification by inhibiting VSMC apoptosis through two distinct mechanisms; preservation of mitochondrial function via its antioxidant potential and restoration of the Gas6/Axl/Akt survival pathway.
doi_str_mv 10.1111/j.1582-4934.2011.01294.x
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3823291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926158035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523</originalsourceid><addsrcrecordid>eNqNkcuO0zAUhiMEYi7wCsgSC1ZNfU3iDVJVDTOgjtjA2jq1HeqSxsVOMu2ONStehRfhIXgSnGkplxWWLB_5fP-Rf_9ZhgjOSVrTdU5ERSdcMp5TTEiOCZU83z3Izk-Nh8eaVKw6yy5iXGPMCsLk4-yMElakTc6zL9-__fj8deG23mkE2hkEXWfbHjob0QBR9w0EpKHRrnYaOudbNDhAwQ42RGiQr9HGdV6vfGuCSxd13-p7DFqTsNj5cJAl8hpiMZ3tmunsY4diHwY3JMUWutUd7J9kj2poon16PC-z96-u3s1vJou316_ns8VEc1LyiSm5rCgIbmtBS2msKIjhZbGUYEvOCYjaSlNpoY3WS6GplRSAYIMrAC0ou8xeHuZu--XGGm3bLkCjtsFtIOyVB6f-7rRupT74QbGKMipJGvDiOCD4T31yqDYuats00FrfRyVpkX4eM5HI5_-Qa9-HNrlTDJdCFkSWI1UdKB18jMHWp7cQrMa81VqNUaoxVjXmre7zVrskffanl5PwV8C_zd65xu7_e7B6M7-9HUv2Ewapv1U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075961975</pqid></control><display><type>article</type><title>α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Kim, Hyunsoo ; Kim, Han‐Jong ; Lee, Kyunghee ; Kim, Jin‐Man ; Kim, Hee Sun ; Kim, Jae‐Ryong ; Ha, Chae‐Myeong ; Choi, Young‐Keun ; Lee, Sun Joo ; Kim, Joon‐Young ; Harris, Robert A. ; Jeong, Daewon ; Lee, In‐Kyu</creator><creatorcontrib>Kim, Hyunsoo ; Kim, Han‐Jong ; Lee, Kyunghee ; Kim, Jin‐Man ; Kim, Hee Sun ; Kim, Jae‐Ryong ; Ha, Chae‐Myeong ; Choi, Young‐Keun ; Lee, Sun Joo ; Kim, Joon‐Young ; Harris, Robert A. ; Jeong, Daewon ; Lee, In‐Kyu</creatorcontrib><description>Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role of mitochondrial dysfunction in the process of vascular calcification. This study investigated the effect of α‐lipoic acid (ALA), a naturally occurring antioxidant that improves mitochondrial function, on vascular calcification in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential and ATP production, the disruption of mitochondrial structural integrity and concurrently increased production of reactive oxygen species. These Pi‐induced functional and structural mitochondrial defects were accompanied by mitochondria‐dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol, subsequent activation of caspase‐9 and ‐3, and chromosomal DNA fragmentation. Intriguingly, ALA blocked the Pi‐induced VSMC apoptosis and calcification by recovery of mitochondrial function and intracellular redox status. Moreover, ALA inhibited Pi‐induced down‐regulation of cell survival signals through the binding of growth arrest‐specific gene 6 (Gas6) to its cognate receptor Axl and subsequent Akt activation, resulting in increased survival and decreased apoptosis. Finally, ALA significantly ameliorated vitamin D3‐induced aortic calcification and mitochondrial damage in mice. Collectively, the findings suggest ALA attenuates vascular calcification by inhibiting VSMC apoptosis through two distinct mechanisms; preservation of mitochondrial function via its antioxidant potential and restoration of the Gas6/Axl/Akt survival pathway.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2011.01294.x</identifier><identifier>PMID: 21362131</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acids ; AKT protein ; Animals ; Antioxidants ; Aorta ; Apoptosis ; Apoptosis - drug effects ; Atherosclerosis ; Axl protein ; Axl Receptor Tyrosine Kinase ; Calcification ; Calcification (ectopic) ; Calcium - metabolism ; Cardiovascular diseases ; Caspase 3 - metabolism ; Caspase 9 - metabolism ; Caspase-9 ; Cell survival ; Cells, Cultured ; Cholecalciferol - pharmacology ; chronic kidney disease ; Cytochrome ; Cytochrome c ; Cytochromes c ; Cytosol ; Dehydrogenases ; Diabetes ; DNA Fragmentation ; Down-regulation ; Humans ; Intercellular Signaling Peptides and Proteins - metabolism ; Kidney diseases ; Kidney Diseases - pathology ; Lipoic acid ; Male ; Membrane potential ; Mice ; Mice, Inbred C57BL ; Mitochondria ; Mitochondria - enzymology ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial DNA ; Morbidity ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Original ; Oxidative stress ; Phosphates - pharmacology ; Proteins ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt - metabolism ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reagents ; Receptor Protein-Tyrosine Kinases - metabolism ; redox status ; Renal function ; Smooth muscle ; Sodium ; Structure-function relationships ; survival ; Thioctic Acid - metabolism ; vascular calcification ; Vascular Calcification - metabolism ; Vascular Diseases - genetics ; Vascular Diseases - metabolism ; vascular smooth muscle cells ; Vitamin D3</subject><ispartof>Journal of cellular and molecular medicine, 2012-02, Vol.16 (2), p.273-286</ispartof><rights>2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.</rights><rights>2012. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523</citedby><cites>FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3075961975/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3075961975?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2011.01294.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21362131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyunsoo</creatorcontrib><creatorcontrib>Kim, Han‐Jong</creatorcontrib><creatorcontrib>Lee, Kyunghee</creatorcontrib><creatorcontrib>Kim, Jin‐Man</creatorcontrib><creatorcontrib>Kim, Hee Sun</creatorcontrib><creatorcontrib>Kim, Jae‐Ryong</creatorcontrib><creatorcontrib>Ha, Chae‐Myeong</creatorcontrib><creatorcontrib>Choi, Young‐Keun</creatorcontrib><creatorcontrib>Lee, Sun Joo</creatorcontrib><creatorcontrib>Kim, Joon‐Young</creatorcontrib><creatorcontrib>Harris, Robert A.</creatorcontrib><creatorcontrib>Jeong, Daewon</creatorcontrib><creatorcontrib>Lee, In‐Kyu</creatorcontrib><title>α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role of mitochondrial dysfunction in the process of vascular calcification. This study investigated the effect of α‐lipoic acid (ALA), a naturally occurring antioxidant that improves mitochondrial function, on vascular calcification in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential and ATP production, the disruption of mitochondrial structural integrity and concurrently increased production of reactive oxygen species. These Pi‐induced functional and structural mitochondrial defects were accompanied by mitochondria‐dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol, subsequent activation of caspase‐9 and ‐3, and chromosomal DNA fragmentation. Intriguingly, ALA blocked the Pi‐induced VSMC apoptosis and calcification by recovery of mitochondrial function and intracellular redox status. Moreover, ALA inhibited Pi‐induced down‐regulation of cell survival signals through the binding of growth arrest‐specific gene 6 (Gas6) to its cognate receptor Axl and subsequent Akt activation, resulting in increased survival and decreased apoptosis. Finally, ALA significantly ameliorated vitamin D3‐induced aortic calcification and mitochondrial damage in mice. Collectively, the findings suggest ALA attenuates vascular calcification by inhibiting VSMC apoptosis through two distinct mechanisms; preservation of mitochondrial function via its antioxidant potential and restoration of the Gas6/Axl/Akt survival pathway.</description><subject>Acids</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Aorta</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Atherosclerosis</subject><subject>Axl protein</subject><subject>Axl Receptor Tyrosine Kinase</subject><subject>Calcification</subject><subject>Calcification (ectopic)</subject><subject>Calcium - metabolism</subject><subject>Cardiovascular diseases</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase 9 - metabolism</subject><subject>Caspase-9</subject><subject>Cell survival</subject><subject>Cells, Cultured</subject><subject>Cholecalciferol - pharmacology</subject><subject>chronic kidney disease</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytochromes c</subject><subject>Cytosol</subject><subject>Dehydrogenases</subject><subject>Diabetes</subject><subject>DNA Fragmentation</subject><subject>Down-regulation</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Kidney diseases</subject><subject>Kidney Diseases - pathology</subject><subject>Lipoic acid</subject><subject>Male</subject><subject>Membrane potential</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial DNA</subject><subject>Morbidity</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Original</subject><subject>Oxidative stress</subject><subject>Phosphates - pharmacology</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reagents</subject><subject>Receptor Protein-Tyrosine Kinases - metabolism</subject><subject>redox status</subject><subject>Renal function</subject><subject>Smooth muscle</subject><subject>Sodium</subject><subject>Structure-function relationships</subject><subject>survival</subject><subject>Thioctic Acid - metabolism</subject><subject>vascular calcification</subject><subject>Vascular Calcification - metabolism</subject><subject>Vascular Diseases - genetics</subject><subject>Vascular Diseases - metabolism</subject><subject>vascular smooth muscle cells</subject><subject>Vitamin D3</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkcuO0zAUhiMEYi7wCsgSC1ZNfU3iDVJVDTOgjtjA2jq1HeqSxsVOMu2ONStehRfhIXgSnGkplxWWLB_5fP-Rf_9ZhgjOSVrTdU5ERSdcMp5TTEiOCZU83z3Izk-Nh8eaVKw6yy5iXGPMCsLk4-yMElakTc6zL9-__fj8deG23mkE2hkEXWfbHjob0QBR9w0EpKHRrnYaOudbNDhAwQ42RGiQr9HGdV6vfGuCSxd13-p7DFqTsNj5cJAl8hpiMZ3tmunsY4diHwY3JMUWutUd7J9kj2poon16PC-z96-u3s1vJou316_ns8VEc1LyiSm5rCgIbmtBS2msKIjhZbGUYEvOCYjaSlNpoY3WS6GplRSAYIMrAC0ou8xeHuZu--XGGm3bLkCjtsFtIOyVB6f-7rRupT74QbGKMipJGvDiOCD4T31yqDYuats00FrfRyVpkX4eM5HI5_-Qa9-HNrlTDJdCFkSWI1UdKB18jMHWp7cQrMa81VqNUaoxVjXmre7zVrskffanl5PwV8C_zd65xu7_e7B6M7-9HUv2Ewapv1U</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Kim, Hyunsoo</creator><creator>Kim, Han‐Jong</creator><creator>Lee, Kyunghee</creator><creator>Kim, Jin‐Man</creator><creator>Kim, Hee Sun</creator><creator>Kim, Jae‐Ryong</creator><creator>Ha, Chae‐Myeong</creator><creator>Choi, Young‐Keun</creator><creator>Lee, Sun Joo</creator><creator>Kim, Joon‐Young</creator><creator>Harris, Robert A.</creator><creator>Jeong, Daewon</creator><creator>Lee, In‐Kyu</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201202</creationdate><title>α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway</title><author>Kim, Hyunsoo ; Kim, Han‐Jong ; Lee, Kyunghee ; Kim, Jin‐Man ; Kim, Hee Sun ; Kim, Jae‐Ryong ; Ha, Chae‐Myeong ; Choi, Young‐Keun ; Lee, Sun Joo ; Kim, Joon‐Young ; Harris, Robert A. ; Jeong, Daewon ; Lee, In‐Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acids</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Aorta</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Atherosclerosis</topic><topic>Axl protein</topic><topic>Axl Receptor Tyrosine Kinase</topic><topic>Calcification</topic><topic>Calcification (ectopic)</topic><topic>Calcium - metabolism</topic><topic>Cardiovascular diseases</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase 9 - metabolism</topic><topic>Caspase-9</topic><topic>Cell survival</topic><topic>Cells, Cultured</topic><topic>Cholecalciferol - pharmacology</topic><topic>chronic kidney disease</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytochromes c</topic><topic>Cytosol</topic><topic>Dehydrogenases</topic><topic>Diabetes</topic><topic>DNA Fragmentation</topic><topic>Down-regulation</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Kidney diseases</topic><topic>Kidney Diseases - pathology</topic><topic>Lipoic acid</topic><topic>Male</topic><topic>Membrane potential</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial DNA</topic><topic>Morbidity</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Original</topic><topic>Oxidative stress</topic><topic>Phosphates - pharmacology</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reagents</topic><topic>Receptor Protein-Tyrosine Kinases - metabolism</topic><topic>redox status</topic><topic>Renal function</topic><topic>Smooth muscle</topic><topic>Sodium</topic><topic>Structure-function relationships</topic><topic>survival</topic><topic>Thioctic Acid - metabolism</topic><topic>vascular calcification</topic><topic>Vascular Calcification - metabolism</topic><topic>Vascular Diseases - genetics</topic><topic>Vascular Diseases - metabolism</topic><topic>vascular smooth muscle cells</topic><topic>Vitamin D3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyunsoo</creatorcontrib><creatorcontrib>Kim, Han‐Jong</creatorcontrib><creatorcontrib>Lee, Kyunghee</creatorcontrib><creatorcontrib>Kim, Jin‐Man</creatorcontrib><creatorcontrib>Kim, Hee Sun</creatorcontrib><creatorcontrib>Kim, Jae‐Ryong</creatorcontrib><creatorcontrib>Ha, Chae‐Myeong</creatorcontrib><creatorcontrib>Choi, Young‐Keun</creatorcontrib><creatorcontrib>Lee, Sun Joo</creatorcontrib><creatorcontrib>Kim, Joon‐Young</creatorcontrib><creatorcontrib>Harris, Robert A.</creatorcontrib><creatorcontrib>Jeong, Daewon</creatorcontrib><creatorcontrib>Lee, In‐Kyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Hyunsoo</au><au>Kim, Han‐Jong</au><au>Lee, Kyunghee</au><au>Kim, Jin‐Man</au><au>Kim, Hee Sun</au><au>Kim, Jae‐Ryong</au><au>Ha, Chae‐Myeong</au><au>Choi, Young‐Keun</au><au>Lee, Sun Joo</au><au>Kim, Joon‐Young</au><au>Harris, Robert A.</au><au>Jeong, Daewon</au><au>Lee, In‐Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2012-02</date><risdate>2012</risdate><volume>16</volume><issue>2</issue><spage>273</spage><epage>286</epage><pages>273-286</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role of mitochondrial dysfunction in the process of vascular calcification. This study investigated the effect of α‐lipoic acid (ALA), a naturally occurring antioxidant that improves mitochondrial function, on vascular calcification in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential and ATP production, the disruption of mitochondrial structural integrity and concurrently increased production of reactive oxygen species. These Pi‐induced functional and structural mitochondrial defects were accompanied by mitochondria‐dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol, subsequent activation of caspase‐9 and ‐3, and chromosomal DNA fragmentation. Intriguingly, ALA blocked the Pi‐induced VSMC apoptosis and calcification by recovery of mitochondrial function and intracellular redox status. Moreover, ALA inhibited Pi‐induced down‐regulation of cell survival signals through the binding of growth arrest‐specific gene 6 (Gas6) to its cognate receptor Axl and subsequent Akt activation, resulting in increased survival and decreased apoptosis. Finally, ALA significantly ameliorated vitamin D3‐induced aortic calcification and mitochondrial damage in mice. Collectively, the findings suggest ALA attenuates vascular calcification by inhibiting VSMC apoptosis through two distinct mechanisms; preservation of mitochondrial function via its antioxidant potential and restoration of the Gas6/Axl/Akt survival pathway.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21362131</pmid><doi>10.1111/j.1582-4934.2011.01294.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2012-02, Vol.16 (2), p.273-286
issn 1582-1838
1582-4934
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3823291
source Open Access: Wiley-Blackwell Open Access Journals
subjects Acids
AKT protein
Animals
Antioxidants
Aorta
Apoptosis
Apoptosis - drug effects
Atherosclerosis
Axl protein
Axl Receptor Tyrosine Kinase
Calcification
Calcification (ectopic)
Calcium - metabolism
Cardiovascular diseases
Caspase 3 - metabolism
Caspase 9 - metabolism
Caspase-9
Cell survival
Cells, Cultured
Cholecalciferol - pharmacology
chronic kidney disease
Cytochrome
Cytochrome c
Cytochromes c
Cytosol
Dehydrogenases
Diabetes
DNA Fragmentation
Down-regulation
Humans
Intercellular Signaling Peptides and Proteins - metabolism
Kidney diseases
Kidney Diseases - pathology
Lipoic acid
Male
Membrane potential
Mice
Mice, Inbred C57BL
Mitochondria
Mitochondria - enzymology
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial DNA
Morbidity
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
Original
Oxidative stress
Phosphates - pharmacology
Proteins
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-akt - metabolism
Reactive oxygen species
Reactive Oxygen Species - metabolism
Reagents
Receptor Protein-Tyrosine Kinases - metabolism
redox status
Renal function
Smooth muscle
Sodium
Structure-function relationships
survival
Thioctic Acid - metabolism
vascular calcification
Vascular Calcification - metabolism
Vascular Diseases - genetics
Vascular Diseases - metabolism
vascular smooth muscle cells
Vitamin D3
title α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B1%E2%80%90Lipoic%20acid%20attenuates%20vascular%20calcification%20via%20reversal%20of%20mitochondrial%20function%20and%20restoration%20of%20Gas6/Axl/Akt%20survival%20pathway&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Kim,%20Hyunsoo&rft.date=2012-02&rft.volume=16&rft.issue=2&rft.spage=273&rft.epage=286&rft.pages=273-286&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2011.01294.x&rft_dat=%3Cproquest_24P%3E926158035%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075961975&rft_id=info:pmid/21362131&rfr_iscdi=true