Loading…
α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway
Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role...
Saved in:
Published in: | Journal of cellular and molecular medicine 2012-02, Vol.16 (2), p.273-286 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523 |
---|---|
cites | cdi_FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523 |
container_end_page | 286 |
container_issue | 2 |
container_start_page | 273 |
container_title | Journal of cellular and molecular medicine |
container_volume | 16 |
creator | Kim, Hyunsoo Kim, Han‐Jong Lee, Kyunghee Kim, Jin‐Man Kim, Hee Sun Kim, Jae‐Ryong Ha, Chae‐Myeong Choi, Young‐Keun Lee, Sun Joo Kim, Joon‐Young Harris, Robert A. Jeong, Daewon Lee, In‐Kyu |
description | Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role of mitochondrial dysfunction in the process of vascular calcification. This study investigated the effect of α‐lipoic acid (ALA), a naturally occurring antioxidant that improves mitochondrial function, on vascular calcification in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential and ATP production, the disruption of mitochondrial structural integrity and concurrently increased production of reactive oxygen species. These Pi‐induced functional and structural mitochondrial defects were accompanied by mitochondria‐dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol, subsequent activation of caspase‐9 and ‐3, and chromosomal DNA fragmentation. Intriguingly, ALA blocked the Pi‐induced VSMC apoptosis and calcification by recovery of mitochondrial function and intracellular redox status. Moreover, ALA inhibited Pi‐induced down‐regulation of cell survival signals through the binding of growth arrest‐specific gene 6 (Gas6) to its cognate receptor Axl and subsequent Akt activation, resulting in increased survival and decreased apoptosis. Finally, ALA significantly ameliorated vitamin D3‐induced aortic calcification and mitochondrial damage in mice. Collectively, the findings suggest ALA attenuates vascular calcification by inhibiting VSMC apoptosis through two distinct mechanisms; preservation of mitochondrial function via its antioxidant potential and restoration of the Gas6/Axl/Akt survival pathway. |
doi_str_mv | 10.1111/j.1582-4934.2011.01294.x |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3823291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926158035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523</originalsourceid><addsrcrecordid>eNqNkcuO0zAUhiMEYi7wCsgSC1ZNfU3iDVJVDTOgjtjA2jq1HeqSxsVOMu2ONStehRfhIXgSnGkplxWWLB_5fP-Rf_9ZhgjOSVrTdU5ERSdcMp5TTEiOCZU83z3Izk-Nh8eaVKw6yy5iXGPMCsLk4-yMElakTc6zL9-__fj8deG23mkE2hkEXWfbHjob0QBR9w0EpKHRrnYaOudbNDhAwQ42RGiQr9HGdV6vfGuCSxd13-p7DFqTsNj5cJAl8hpiMZ3tmunsY4diHwY3JMUWutUd7J9kj2poon16PC-z96-u3s1vJou316_ns8VEc1LyiSm5rCgIbmtBS2msKIjhZbGUYEvOCYjaSlNpoY3WS6GplRSAYIMrAC0ou8xeHuZu--XGGm3bLkCjtsFtIOyVB6f-7rRupT74QbGKMipJGvDiOCD4T31yqDYuats00FrfRyVpkX4eM5HI5_-Qa9-HNrlTDJdCFkSWI1UdKB18jMHWp7cQrMa81VqNUaoxVjXmre7zVrskffanl5PwV8C_zd65xu7_e7B6M7-9HUv2Ewapv1U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075961975</pqid></control><display><type>article</type><title>α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Kim, Hyunsoo ; Kim, Han‐Jong ; Lee, Kyunghee ; Kim, Jin‐Man ; Kim, Hee Sun ; Kim, Jae‐Ryong ; Ha, Chae‐Myeong ; Choi, Young‐Keun ; Lee, Sun Joo ; Kim, Joon‐Young ; Harris, Robert A. ; Jeong, Daewon ; Lee, In‐Kyu</creator><creatorcontrib>Kim, Hyunsoo ; Kim, Han‐Jong ; Lee, Kyunghee ; Kim, Jin‐Man ; Kim, Hee Sun ; Kim, Jae‐Ryong ; Ha, Chae‐Myeong ; Choi, Young‐Keun ; Lee, Sun Joo ; Kim, Joon‐Young ; Harris, Robert A. ; Jeong, Daewon ; Lee, In‐Kyu</creatorcontrib><description>Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role of mitochondrial dysfunction in the process of vascular calcification. This study investigated the effect of α‐lipoic acid (ALA), a naturally occurring antioxidant that improves mitochondrial function, on vascular calcification in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential and ATP production, the disruption of mitochondrial structural integrity and concurrently increased production of reactive oxygen species. These Pi‐induced functional and structural mitochondrial defects were accompanied by mitochondria‐dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol, subsequent activation of caspase‐9 and ‐3, and chromosomal DNA fragmentation. Intriguingly, ALA blocked the Pi‐induced VSMC apoptosis and calcification by recovery of mitochondrial function and intracellular redox status. Moreover, ALA inhibited Pi‐induced down‐regulation of cell survival signals through the binding of growth arrest‐specific gene 6 (Gas6) to its cognate receptor Axl and subsequent Akt activation, resulting in increased survival and decreased apoptosis. Finally, ALA significantly ameliorated vitamin D3‐induced aortic calcification and mitochondrial damage in mice. Collectively, the findings suggest ALA attenuates vascular calcification by inhibiting VSMC apoptosis through two distinct mechanisms; preservation of mitochondrial function via its antioxidant potential and restoration of the Gas6/Axl/Akt survival pathway.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2011.01294.x</identifier><identifier>PMID: 21362131</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acids ; AKT protein ; Animals ; Antioxidants ; Aorta ; Apoptosis ; Apoptosis - drug effects ; Atherosclerosis ; Axl protein ; Axl Receptor Tyrosine Kinase ; Calcification ; Calcification (ectopic) ; Calcium - metabolism ; Cardiovascular diseases ; Caspase 3 - metabolism ; Caspase 9 - metabolism ; Caspase-9 ; Cell survival ; Cells, Cultured ; Cholecalciferol - pharmacology ; chronic kidney disease ; Cytochrome ; Cytochrome c ; Cytochromes c ; Cytosol ; Dehydrogenases ; Diabetes ; DNA Fragmentation ; Down-regulation ; Humans ; Intercellular Signaling Peptides and Proteins - metabolism ; Kidney diseases ; Kidney Diseases - pathology ; Lipoic acid ; Male ; Membrane potential ; Mice ; Mice, Inbred C57BL ; Mitochondria ; Mitochondria - enzymology ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial DNA ; Morbidity ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Original ; Oxidative stress ; Phosphates - pharmacology ; Proteins ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt - metabolism ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reagents ; Receptor Protein-Tyrosine Kinases - metabolism ; redox status ; Renal function ; Smooth muscle ; Sodium ; Structure-function relationships ; survival ; Thioctic Acid - metabolism ; vascular calcification ; Vascular Calcification - metabolism ; Vascular Diseases - genetics ; Vascular Diseases - metabolism ; vascular smooth muscle cells ; Vitamin D3</subject><ispartof>Journal of cellular and molecular medicine, 2012-02, Vol.16 (2), p.273-286</ispartof><rights>2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.</rights><rights>2012. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523</citedby><cites>FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3075961975/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3075961975?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2011.01294.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21362131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyunsoo</creatorcontrib><creatorcontrib>Kim, Han‐Jong</creatorcontrib><creatorcontrib>Lee, Kyunghee</creatorcontrib><creatorcontrib>Kim, Jin‐Man</creatorcontrib><creatorcontrib>Kim, Hee Sun</creatorcontrib><creatorcontrib>Kim, Jae‐Ryong</creatorcontrib><creatorcontrib>Ha, Chae‐Myeong</creatorcontrib><creatorcontrib>Choi, Young‐Keun</creatorcontrib><creatorcontrib>Lee, Sun Joo</creatorcontrib><creatorcontrib>Kim, Joon‐Young</creatorcontrib><creatorcontrib>Harris, Robert A.</creatorcontrib><creatorcontrib>Jeong, Daewon</creatorcontrib><creatorcontrib>Lee, In‐Kyu</creatorcontrib><title>α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role of mitochondrial dysfunction in the process of vascular calcification. This study investigated the effect of α‐lipoic acid (ALA), a naturally occurring antioxidant that improves mitochondrial function, on vascular calcification in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential and ATP production, the disruption of mitochondrial structural integrity and concurrently increased production of reactive oxygen species. These Pi‐induced functional and structural mitochondrial defects were accompanied by mitochondria‐dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol, subsequent activation of caspase‐9 and ‐3, and chromosomal DNA fragmentation. Intriguingly, ALA blocked the Pi‐induced VSMC apoptosis and calcification by recovery of mitochondrial function and intracellular redox status. Moreover, ALA inhibited Pi‐induced down‐regulation of cell survival signals through the binding of growth arrest‐specific gene 6 (Gas6) to its cognate receptor Axl and subsequent Akt activation, resulting in increased survival and decreased apoptosis. Finally, ALA significantly ameliorated vitamin D3‐induced aortic calcification and mitochondrial damage in mice. Collectively, the findings suggest ALA attenuates vascular calcification by inhibiting VSMC apoptosis through two distinct mechanisms; preservation of mitochondrial function via its antioxidant potential and restoration of the Gas6/Axl/Akt survival pathway.</description><subject>Acids</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Aorta</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Atherosclerosis</subject><subject>Axl protein</subject><subject>Axl Receptor Tyrosine Kinase</subject><subject>Calcification</subject><subject>Calcification (ectopic)</subject><subject>Calcium - metabolism</subject><subject>Cardiovascular diseases</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase 9 - metabolism</subject><subject>Caspase-9</subject><subject>Cell survival</subject><subject>Cells, Cultured</subject><subject>Cholecalciferol - pharmacology</subject><subject>chronic kidney disease</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytochromes c</subject><subject>Cytosol</subject><subject>Dehydrogenases</subject><subject>Diabetes</subject><subject>DNA Fragmentation</subject><subject>Down-regulation</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Kidney diseases</subject><subject>Kidney Diseases - pathology</subject><subject>Lipoic acid</subject><subject>Male</subject><subject>Membrane potential</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial DNA</subject><subject>Morbidity</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Original</subject><subject>Oxidative stress</subject><subject>Phosphates - pharmacology</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reagents</subject><subject>Receptor Protein-Tyrosine Kinases - metabolism</subject><subject>redox status</subject><subject>Renal function</subject><subject>Smooth muscle</subject><subject>Sodium</subject><subject>Structure-function relationships</subject><subject>survival</subject><subject>Thioctic Acid - metabolism</subject><subject>vascular calcification</subject><subject>Vascular Calcification - metabolism</subject><subject>Vascular Diseases - genetics</subject><subject>Vascular Diseases - metabolism</subject><subject>vascular smooth muscle cells</subject><subject>Vitamin D3</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkcuO0zAUhiMEYi7wCsgSC1ZNfU3iDVJVDTOgjtjA2jq1HeqSxsVOMu2ONStehRfhIXgSnGkplxWWLB_5fP-Rf_9ZhgjOSVrTdU5ERSdcMp5TTEiOCZU83z3Izk-Nh8eaVKw6yy5iXGPMCsLk4-yMElakTc6zL9-__fj8deG23mkE2hkEXWfbHjob0QBR9w0EpKHRrnYaOudbNDhAwQ42RGiQr9HGdV6vfGuCSxd13-p7DFqTsNj5cJAl8hpiMZ3tmunsY4diHwY3JMUWutUd7J9kj2poon16PC-z96-u3s1vJou316_ns8VEc1LyiSm5rCgIbmtBS2msKIjhZbGUYEvOCYjaSlNpoY3WS6GplRSAYIMrAC0ou8xeHuZu--XGGm3bLkCjtsFtIOyVB6f-7rRupT74QbGKMipJGvDiOCD4T31yqDYuats00FrfRyVpkX4eM5HI5_-Qa9-HNrlTDJdCFkSWI1UdKB18jMHWp7cQrMa81VqNUaoxVjXmre7zVrskffanl5PwV8C_zd65xu7_e7B6M7-9HUv2Ewapv1U</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Kim, Hyunsoo</creator><creator>Kim, Han‐Jong</creator><creator>Lee, Kyunghee</creator><creator>Kim, Jin‐Man</creator><creator>Kim, Hee Sun</creator><creator>Kim, Jae‐Ryong</creator><creator>Ha, Chae‐Myeong</creator><creator>Choi, Young‐Keun</creator><creator>Lee, Sun Joo</creator><creator>Kim, Joon‐Young</creator><creator>Harris, Robert A.</creator><creator>Jeong, Daewon</creator><creator>Lee, In‐Kyu</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201202</creationdate><title>α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway</title><author>Kim, Hyunsoo ; Kim, Han‐Jong ; Lee, Kyunghee ; Kim, Jin‐Man ; Kim, Hee Sun ; Kim, Jae‐Ryong ; Ha, Chae‐Myeong ; Choi, Young‐Keun ; Lee, Sun Joo ; Kim, Joon‐Young ; Harris, Robert A. ; Jeong, Daewon ; Lee, In‐Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acids</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Aorta</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Atherosclerosis</topic><topic>Axl protein</topic><topic>Axl Receptor Tyrosine Kinase</topic><topic>Calcification</topic><topic>Calcification (ectopic)</topic><topic>Calcium - metabolism</topic><topic>Cardiovascular diseases</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase 9 - metabolism</topic><topic>Caspase-9</topic><topic>Cell survival</topic><topic>Cells, Cultured</topic><topic>Cholecalciferol - pharmacology</topic><topic>chronic kidney disease</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytochromes c</topic><topic>Cytosol</topic><topic>Dehydrogenases</topic><topic>Diabetes</topic><topic>DNA Fragmentation</topic><topic>Down-regulation</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Kidney diseases</topic><topic>Kidney Diseases - pathology</topic><topic>Lipoic acid</topic><topic>Male</topic><topic>Membrane potential</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial DNA</topic><topic>Morbidity</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Original</topic><topic>Oxidative stress</topic><topic>Phosphates - pharmacology</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reagents</topic><topic>Receptor Protein-Tyrosine Kinases - metabolism</topic><topic>redox status</topic><topic>Renal function</topic><topic>Smooth muscle</topic><topic>Sodium</topic><topic>Structure-function relationships</topic><topic>survival</topic><topic>Thioctic Acid - metabolism</topic><topic>vascular calcification</topic><topic>Vascular Calcification - metabolism</topic><topic>Vascular Diseases - genetics</topic><topic>Vascular Diseases - metabolism</topic><topic>vascular smooth muscle cells</topic><topic>Vitamin D3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyunsoo</creatorcontrib><creatorcontrib>Kim, Han‐Jong</creatorcontrib><creatorcontrib>Lee, Kyunghee</creatorcontrib><creatorcontrib>Kim, Jin‐Man</creatorcontrib><creatorcontrib>Kim, Hee Sun</creatorcontrib><creatorcontrib>Kim, Jae‐Ryong</creatorcontrib><creatorcontrib>Ha, Chae‐Myeong</creatorcontrib><creatorcontrib>Choi, Young‐Keun</creatorcontrib><creatorcontrib>Lee, Sun Joo</creatorcontrib><creatorcontrib>Kim, Joon‐Young</creatorcontrib><creatorcontrib>Harris, Robert A.</creatorcontrib><creatorcontrib>Jeong, Daewon</creatorcontrib><creatorcontrib>Lee, In‐Kyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Hyunsoo</au><au>Kim, Han‐Jong</au><au>Lee, Kyunghee</au><au>Kim, Jin‐Man</au><au>Kim, Hee Sun</au><au>Kim, Jae‐Ryong</au><au>Ha, Chae‐Myeong</au><au>Choi, Young‐Keun</au><au>Lee, Sun Joo</au><au>Kim, Joon‐Young</au><au>Harris, Robert A.</au><au>Jeong, Daewon</au><au>Lee, In‐Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2012-02</date><risdate>2012</risdate><volume>16</volume><issue>2</issue><spage>273</spage><epage>286</epage><pages>273-286</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role of mitochondrial dysfunction in the process of vascular calcification. This study investigated the effect of α‐lipoic acid (ALA), a naturally occurring antioxidant that improves mitochondrial function, on vascular calcification in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential and ATP production, the disruption of mitochondrial structural integrity and concurrently increased production of reactive oxygen species. These Pi‐induced functional and structural mitochondrial defects were accompanied by mitochondria‐dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol, subsequent activation of caspase‐9 and ‐3, and chromosomal DNA fragmentation. Intriguingly, ALA blocked the Pi‐induced VSMC apoptosis and calcification by recovery of mitochondrial function and intracellular redox status. Moreover, ALA inhibited Pi‐induced down‐regulation of cell survival signals through the binding of growth arrest‐specific gene 6 (Gas6) to its cognate receptor Axl and subsequent Akt activation, resulting in increased survival and decreased apoptosis. Finally, ALA significantly ameliorated vitamin D3‐induced aortic calcification and mitochondrial damage in mice. Collectively, the findings suggest ALA attenuates vascular calcification by inhibiting VSMC apoptosis through two distinct mechanisms; preservation of mitochondrial function via its antioxidant potential and restoration of the Gas6/Axl/Akt survival pathway.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21362131</pmid><doi>10.1111/j.1582-4934.2011.01294.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2012-02, Vol.16 (2), p.273-286 |
issn | 1582-1838 1582-4934 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3823291 |
source | Open Access: Wiley-Blackwell Open Access Journals |
subjects | Acids AKT protein Animals Antioxidants Aorta Apoptosis Apoptosis - drug effects Atherosclerosis Axl protein Axl Receptor Tyrosine Kinase Calcification Calcification (ectopic) Calcium - metabolism Cardiovascular diseases Caspase 3 - metabolism Caspase 9 - metabolism Caspase-9 Cell survival Cells, Cultured Cholecalciferol - pharmacology chronic kidney disease Cytochrome Cytochrome c Cytochromes c Cytosol Dehydrogenases Diabetes DNA Fragmentation Down-regulation Humans Intercellular Signaling Peptides and Proteins - metabolism Kidney diseases Kidney Diseases - pathology Lipoic acid Male Membrane potential Mice Mice, Inbred C57BL Mitochondria Mitochondria - enzymology Mitochondria - metabolism Mitochondria - pathology Mitochondrial DNA Morbidity Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology Original Oxidative stress Phosphates - pharmacology Proteins Proto-Oncogene Proteins - metabolism Proto-Oncogene Proteins c-akt - metabolism Reactive oxygen species Reactive Oxygen Species - metabolism Reagents Receptor Protein-Tyrosine Kinases - metabolism redox status Renal function Smooth muscle Sodium Structure-function relationships survival Thioctic Acid - metabolism vascular calcification Vascular Calcification - metabolism Vascular Diseases - genetics Vascular Diseases - metabolism vascular smooth muscle cells Vitamin D3 |
title | α‐Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B1%E2%80%90Lipoic%20acid%20attenuates%20vascular%20calcification%20via%20reversal%20of%20mitochondrial%20function%20and%20restoration%20of%20Gas6/Axl/Akt%20survival%20pathway&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Kim,%20Hyunsoo&rft.date=2012-02&rft.volume=16&rft.issue=2&rft.spage=273&rft.epage=286&rft.pages=273-286&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2011.01294.x&rft_dat=%3Cproquest_24P%3E926158035%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4174-d74982a54ef5279de561d476b9ae7441a5fe9d8c5cdccb5c2e92aa10d08aac523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075961975&rft_id=info:pmid/21362131&rfr_iscdi=true |