Loading…
Suppression of Heregulin β Signaling by the Single N-Glycan Deletion Mutant of Soluble ErbB3 Protein
Heregulin signaling is involved in various tumor proliferations and invasions; thus, receptors of heregulin are targets for the cancer therapy. In this study we examined the suppressing effects of extracellular domains of ErbB2, ErbB3, and ErbB4 (soluble ErbB (sErbB)) on heregulin β signaling in hum...
Saved in:
Published in: | The Journal of biological chemistry 2013-11, Vol.288 (46), p.32910-32921 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heregulin signaling is involved in various tumor proliferations and invasions; thus, receptors of heregulin are targets for the cancer therapy. In this study we examined the suppressing effects of extracellular domains of ErbB2, ErbB3, and ErbB4 (soluble ErbB (sErbB)) on heregulin β signaling in human breast cancer cell line MCF7. It was found that sErbB3 suppresses ligand-induced activation of ErbB receptors, PI3K/Akt and Ras/Erk pathways most effectively; sErbB2 scarcely suppresses ligand-induced signaling, and sErbB4 suppresses receptor activation at ∼10% efficiency of sErbB3. It was revealed that sErbB3 does not decrease the effective ligands but decreases the effective receptors. By using small interfering RNA (siRNA) for ErbB receptors, we determined that sErbB3 suppresses the heregulin β signaling by interfering ErbB3-containing heterodimers including ErbB2/ErbB3. By introducing the mutation of N418Q to sErbB3, the signaling-inhibitory effects were increased by 2–3-fold. Moreover, the sErbB3 N418Q mutant enhanced anticancer effects of lapatinib more effectively than the wild type. We also determined the structures of N-glycan on Asn-418. Results suggested that the N-glycan-deleted mutant of sErbB3 suppresses heregulin signaling via ErbB3-containing heterodimers more effectively than the wild type. Thus, we demonstrated that the sErbB3 N418Q mutant is a potent inhibitor for heregulin β signaling.
Background: Extracellular domain of ErbBs (sErbBs) down-regulates growth factor signaling.
Results: sErbB3 acts on ErbB3-containing heterodimers to suppress heregulin signaling, and the effects are enhanced by single N-glycan deletion.
Conclusion:N-Glycan on Asn-418 controls the ability of sErbB3 to suppress heregulin signaling.
Significance: Provides new insights toward understanding the mechanisms by which N-glycan regulates ErbB receptors. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M113.491902 |