Loading…

Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate

NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to diffe...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2013-08, Vol.52 (34), p.5790-5799
Main Authors: Steed, P. Ryan, Stein, Richard A, Mishra, Smriti, Goodman, Michael C, Mchaourab, Hassane S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53
cites cdi_FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53
container_end_page 5799
container_issue 34
container_start_page 5790
container_title Biochemistry (Easton)
container_volume 52
creator Steed, P. Ryan
Stein, Richard A
Mishra, Smriti
Goodman, Michael C
Mchaourab, Hassane S
description NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to differing models of the mechanism of ion-coupled substrate extrusion. In the experiments reported here, we observed that a spin-labeled derivative of daunorubicin, Ruboxyl, is transported by NorM from Vibrio cholerae. It is therefore ideal for characterizing mechanistically relevant binding interactions with NorM and directly addressing the coupling of ion and drug binding. Fluorescence and electron paramagnetic resonance experiments revealed that Ruboxyl binds to NorM with micromolar affinity and becomes immobilized upon binding, even in the presence of Na+. Using double electron–electron resonance spectroscopy, we determined that Ruboxyl binds to a single site on the periplasmic side of the protein. The presence of Na+ did not translocate the substrate to a second site as previously proposed. These experiments surprisingly show that Na+ does not affect the affinity or location of the substrate binding site on detergent-solubilized NorM, thus suggesting that additional factors beyond simple mutual exclusivity of binding, such as the presence of a Na+ gradient across the native membrane, govern Na+–drug coupling during antiport.
doi_str_mv 10.1021/bi4008935
format article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3842230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b062455199</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53</originalsourceid><addsrcrecordid>eNptkM1KAzEUhYMotlYXvoBk40JkND-TmclGKMU_aKtQ3Tokk6RNmU6GTEZx5zv4hj6JI9Wi4Opy7z33O9wDwCFGZxgRfC5tjFDGKdsCfcwIimLO2TboI4SSiPAE9cBe0yy7NkZpvAt6hHJEWIb74GkqTj_e3metbIIXQcORa-vSVnNoKxgWGk7aMljl2zkcVsHWzgft4dT5Cbz3TmoFX2xYQAFnta2isZC67GYb3D7YMaJs9MF3HYDHq8uH0U00vru-HQ3HkYgRC5FBWZJhrkyaaJYIo6QmCRVZWsQpJqZIqY6ZQSo1hHGqiZGUcKqYSguZKcnoAFysuXUrV1oVuursy7z2diX8a-6Ezf9uKrvI5-45p1lMCEUd4GQNKLxrGq_N5haj_CvkfBNypz36bbZR_qTaCY7XAlE0-dK1vup-_wf0CXM7hZI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Steed, P. Ryan ; Stein, Richard A ; Mishra, Smriti ; Goodman, Michael C ; Mchaourab, Hassane S</creator><creatorcontrib>Steed, P. Ryan ; Stein, Richard A ; Mishra, Smriti ; Goodman, Michael C ; Mchaourab, Hassane S</creatorcontrib><description>NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to differing models of the mechanism of ion-coupled substrate extrusion. In the experiments reported here, we observed that a spin-labeled derivative of daunorubicin, Ruboxyl, is transported by NorM from Vibrio cholerae. It is therefore ideal for characterizing mechanistically relevant binding interactions with NorM and directly addressing the coupling of ion and drug binding. Fluorescence and electron paramagnetic resonance experiments revealed that Ruboxyl binds to NorM with micromolar affinity and becomes immobilized upon binding, even in the presence of Na+. Using double electron–electron resonance spectroscopy, we determined that Ruboxyl binds to a single site on the periplasmic side of the protein. The presence of Na+ did not translocate the substrate to a second site as previously proposed. These experiments surprisingly show that Na+ does not affect the affinity or location of the substrate binding site on detergent-solubilized NorM, thus suggesting that additional factors beyond simple mutual exclusivity of binding, such as the presence of a Na+ gradient across the native membrane, govern Na+–drug coupling during antiport.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi4008935</identifier><identifier>PMID: 23902581</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antiporters - metabolism ; Bacterial Proteins - metabolism ; Binding Sites - drug effects ; Daunorubicin - analogs &amp; derivatives ; Daunorubicin - metabolism ; Daunorubicin - pharmacology ; Escherichia coli - drug effects ; Protein Binding ; Sodium - metabolism ; Sodium - pharmacology ; Spin Labels ; Vibrio cholerae - chemistry</subject><ispartof>Biochemistry (Easton), 2013-08, Vol.52 (34), p.5790-5799</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53</citedby><cites>FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23902581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steed, P. Ryan</creatorcontrib><creatorcontrib>Stein, Richard A</creatorcontrib><creatorcontrib>Mishra, Smriti</creatorcontrib><creatorcontrib>Goodman, Michael C</creatorcontrib><creatorcontrib>Mchaourab, Hassane S</creatorcontrib><title>Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to differing models of the mechanism of ion-coupled substrate extrusion. In the experiments reported here, we observed that a spin-labeled derivative of daunorubicin, Ruboxyl, is transported by NorM from Vibrio cholerae. It is therefore ideal for characterizing mechanistically relevant binding interactions with NorM and directly addressing the coupling of ion and drug binding. Fluorescence and electron paramagnetic resonance experiments revealed that Ruboxyl binds to NorM with micromolar affinity and becomes immobilized upon binding, even in the presence of Na+. Using double electron–electron resonance spectroscopy, we determined that Ruboxyl binds to a single site on the periplasmic side of the protein. The presence of Na+ did not translocate the substrate to a second site as previously proposed. These experiments surprisingly show that Na+ does not affect the affinity or location of the substrate binding site on detergent-solubilized NorM, thus suggesting that additional factors beyond simple mutual exclusivity of binding, such as the presence of a Na+ gradient across the native membrane, govern Na+–drug coupling during antiport.</description><subject>Antiporters - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites - drug effects</subject><subject>Daunorubicin - analogs &amp; derivatives</subject><subject>Daunorubicin - metabolism</subject><subject>Daunorubicin - pharmacology</subject><subject>Escherichia coli - drug effects</subject><subject>Protein Binding</subject><subject>Sodium - metabolism</subject><subject>Sodium - pharmacology</subject><subject>Spin Labels</subject><subject>Vibrio cholerae - chemistry</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkM1KAzEUhYMotlYXvoBk40JkND-TmclGKMU_aKtQ3Tokk6RNmU6GTEZx5zv4hj6JI9Wi4Opy7z33O9wDwCFGZxgRfC5tjFDGKdsCfcwIimLO2TboI4SSiPAE9cBe0yy7NkZpvAt6hHJEWIb74GkqTj_e3metbIIXQcORa-vSVnNoKxgWGk7aMljl2zkcVsHWzgft4dT5Cbz3TmoFX2xYQAFnta2isZC67GYb3D7YMaJs9MF3HYDHq8uH0U00vru-HQ3HkYgRC5FBWZJhrkyaaJYIo6QmCRVZWsQpJqZIqY6ZQSo1hHGqiZGUcKqYSguZKcnoAFysuXUrV1oVuursy7z2diX8a-6Ezf9uKrvI5-45p1lMCEUd4GQNKLxrGq_N5haj_CvkfBNypz36bbZR_qTaCY7XAlE0-dK1vup-_wf0CXM7hZI</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Steed, P. Ryan</creator><creator>Stein, Richard A</creator><creator>Mishra, Smriti</creator><creator>Goodman, Michael C</creator><creator>Mchaourab, Hassane S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130827</creationdate><title>Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate</title><author>Steed, P. Ryan ; Stein, Richard A ; Mishra, Smriti ; Goodman, Michael C ; Mchaourab, Hassane S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antiporters - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites - drug effects</topic><topic>Daunorubicin - analogs &amp; derivatives</topic><topic>Daunorubicin - metabolism</topic><topic>Daunorubicin - pharmacology</topic><topic>Escherichia coli - drug effects</topic><topic>Protein Binding</topic><topic>Sodium - metabolism</topic><topic>Sodium - pharmacology</topic><topic>Spin Labels</topic><topic>Vibrio cholerae - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steed, P. Ryan</creatorcontrib><creatorcontrib>Stein, Richard A</creatorcontrib><creatorcontrib>Mishra, Smriti</creatorcontrib><creatorcontrib>Goodman, Michael C</creatorcontrib><creatorcontrib>Mchaourab, Hassane S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steed, P. Ryan</au><au>Stein, Richard A</au><au>Mishra, Smriti</au><au>Goodman, Michael C</au><au>Mchaourab, Hassane S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>52</volume><issue>34</issue><spage>5790</spage><epage>5799</epage><pages>5790-5799</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to differing models of the mechanism of ion-coupled substrate extrusion. In the experiments reported here, we observed that a spin-labeled derivative of daunorubicin, Ruboxyl, is transported by NorM from Vibrio cholerae. It is therefore ideal for characterizing mechanistically relevant binding interactions with NorM and directly addressing the coupling of ion and drug binding. Fluorescence and electron paramagnetic resonance experiments revealed that Ruboxyl binds to NorM with micromolar affinity and becomes immobilized upon binding, even in the presence of Na+. Using double electron–electron resonance spectroscopy, we determined that Ruboxyl binds to a single site on the periplasmic side of the protein. The presence of Na+ did not translocate the substrate to a second site as previously proposed. These experiments surprisingly show that Na+ does not affect the affinity or location of the substrate binding site on detergent-solubilized NorM, thus suggesting that additional factors beyond simple mutual exclusivity of binding, such as the presence of a Na+ gradient across the native membrane, govern Na+–drug coupling during antiport.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23902581</pmid><doi>10.1021/bi4008935</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2013-08, Vol.52 (34), p.5790-5799
issn 0006-2960
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3842230
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Antiporters - metabolism
Bacterial Proteins - metabolism
Binding Sites - drug effects
Daunorubicin - analogs & derivatives
Daunorubicin - metabolism
Daunorubicin - pharmacology
Escherichia coli - drug effects
Protein Binding
Sodium - metabolism
Sodium - pharmacology
Spin Labels
Vibrio cholerae - chemistry
title Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na+%E2%80%93Substrate%20Coupling%20in%20the%20Multidrug%20Antiporter%20NorM%20Probed%20with%20a%20Spin-Labeled%20Substrate&rft.jtitle=Biochemistry%20(Easton)&rft.au=Steed,%20P.%20Ryan&rft.date=2013-08-27&rft.volume=52&rft.issue=34&rft.spage=5790&rft.epage=5799&rft.pages=5790-5799&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi4008935&rft_dat=%3Cacs_pubme%3Eb062455199%3C/acs_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/23902581&rfr_iscdi=true