Loading…
Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate
NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to diffe...
Saved in:
Published in: | Biochemistry (Easton) 2013-08, Vol.52 (34), p.5790-5799 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53 |
---|---|
cites | cdi_FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53 |
container_end_page | 5799 |
container_issue | 34 |
container_start_page | 5790 |
container_title | Biochemistry (Easton) |
container_volume | 52 |
creator | Steed, P. Ryan Stein, Richard A Mishra, Smriti Goodman, Michael C Mchaourab, Hassane S |
description | NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to differing models of the mechanism of ion-coupled substrate extrusion. In the experiments reported here, we observed that a spin-labeled derivative of daunorubicin, Ruboxyl, is transported by NorM from Vibrio cholerae. It is therefore ideal for characterizing mechanistically relevant binding interactions with NorM and directly addressing the coupling of ion and drug binding. Fluorescence and electron paramagnetic resonance experiments revealed that Ruboxyl binds to NorM with micromolar affinity and becomes immobilized upon binding, even in the presence of Na+. Using double electron–electron resonance spectroscopy, we determined that Ruboxyl binds to a single site on the periplasmic side of the protein. The presence of Na+ did not translocate the substrate to a second site as previously proposed. These experiments surprisingly show that Na+ does not affect the affinity or location of the substrate binding site on detergent-solubilized NorM, thus suggesting that additional factors beyond simple mutual exclusivity of binding, such as the presence of a Na+ gradient across the native membrane, govern Na+–drug coupling during antiport. |
doi_str_mv | 10.1021/bi4008935 |
format | article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3842230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b062455199</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53</originalsourceid><addsrcrecordid>eNptkM1KAzEUhYMotlYXvoBk40JkND-TmclGKMU_aKtQ3Tokk6RNmU6GTEZx5zv4hj6JI9Wi4Opy7z33O9wDwCFGZxgRfC5tjFDGKdsCfcwIimLO2TboI4SSiPAE9cBe0yy7NkZpvAt6hHJEWIb74GkqTj_e3metbIIXQcORa-vSVnNoKxgWGk7aMljl2zkcVsHWzgft4dT5Cbz3TmoFX2xYQAFnta2isZC67GYb3D7YMaJs9MF3HYDHq8uH0U00vru-HQ3HkYgRC5FBWZJhrkyaaJYIo6QmCRVZWsQpJqZIqY6ZQSo1hHGqiZGUcKqYSguZKcnoAFysuXUrV1oVuursy7z2diX8a-6Ezf9uKrvI5-45p1lMCEUd4GQNKLxrGq_N5haj_CvkfBNypz36bbZR_qTaCY7XAlE0-dK1vup-_wf0CXM7hZI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Steed, P. Ryan ; Stein, Richard A ; Mishra, Smriti ; Goodman, Michael C ; Mchaourab, Hassane S</creator><creatorcontrib>Steed, P. Ryan ; Stein, Richard A ; Mishra, Smriti ; Goodman, Michael C ; Mchaourab, Hassane S</creatorcontrib><description>NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to differing models of the mechanism of ion-coupled substrate extrusion. In the experiments reported here, we observed that a spin-labeled derivative of daunorubicin, Ruboxyl, is transported by NorM from Vibrio cholerae. It is therefore ideal for characterizing mechanistically relevant binding interactions with NorM and directly addressing the coupling of ion and drug binding. Fluorescence and electron paramagnetic resonance experiments revealed that Ruboxyl binds to NorM with micromolar affinity and becomes immobilized upon binding, even in the presence of Na+. Using double electron–electron resonance spectroscopy, we determined that Ruboxyl binds to a single site on the periplasmic side of the protein. The presence of Na+ did not translocate the substrate to a second site as previously proposed. These experiments surprisingly show that Na+ does not affect the affinity or location of the substrate binding site on detergent-solubilized NorM, thus suggesting that additional factors beyond simple mutual exclusivity of binding, such as the presence of a Na+ gradient across the native membrane, govern Na+–drug coupling during antiport.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi4008935</identifier><identifier>PMID: 23902581</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antiporters - metabolism ; Bacterial Proteins - metabolism ; Binding Sites - drug effects ; Daunorubicin - analogs & derivatives ; Daunorubicin - metabolism ; Daunorubicin - pharmacology ; Escherichia coli - drug effects ; Protein Binding ; Sodium - metabolism ; Sodium - pharmacology ; Spin Labels ; Vibrio cholerae - chemistry</subject><ispartof>Biochemistry (Easton), 2013-08, Vol.52 (34), p.5790-5799</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53</citedby><cites>FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23902581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steed, P. Ryan</creatorcontrib><creatorcontrib>Stein, Richard A</creatorcontrib><creatorcontrib>Mishra, Smriti</creatorcontrib><creatorcontrib>Goodman, Michael C</creatorcontrib><creatorcontrib>Mchaourab, Hassane S</creatorcontrib><title>Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to differing models of the mechanism of ion-coupled substrate extrusion. In the experiments reported here, we observed that a spin-labeled derivative of daunorubicin, Ruboxyl, is transported by NorM from Vibrio cholerae. It is therefore ideal for characterizing mechanistically relevant binding interactions with NorM and directly addressing the coupling of ion and drug binding. Fluorescence and electron paramagnetic resonance experiments revealed that Ruboxyl binds to NorM with micromolar affinity and becomes immobilized upon binding, even in the presence of Na+. Using double electron–electron resonance spectroscopy, we determined that Ruboxyl binds to a single site on the periplasmic side of the protein. The presence of Na+ did not translocate the substrate to a second site as previously proposed. These experiments surprisingly show that Na+ does not affect the affinity or location of the substrate binding site on detergent-solubilized NorM, thus suggesting that additional factors beyond simple mutual exclusivity of binding, such as the presence of a Na+ gradient across the native membrane, govern Na+–drug coupling during antiport.</description><subject>Antiporters - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites - drug effects</subject><subject>Daunorubicin - analogs & derivatives</subject><subject>Daunorubicin - metabolism</subject><subject>Daunorubicin - pharmacology</subject><subject>Escherichia coli - drug effects</subject><subject>Protein Binding</subject><subject>Sodium - metabolism</subject><subject>Sodium - pharmacology</subject><subject>Spin Labels</subject><subject>Vibrio cholerae - chemistry</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkM1KAzEUhYMotlYXvoBk40JkND-TmclGKMU_aKtQ3Tokk6RNmU6GTEZx5zv4hj6JI9Wi4Opy7z33O9wDwCFGZxgRfC5tjFDGKdsCfcwIimLO2TboI4SSiPAE9cBe0yy7NkZpvAt6hHJEWIb74GkqTj_e3metbIIXQcORa-vSVnNoKxgWGk7aMljl2zkcVsHWzgft4dT5Cbz3TmoFX2xYQAFnta2isZC67GYb3D7YMaJs9MF3HYDHq8uH0U00vru-HQ3HkYgRC5FBWZJhrkyaaJYIo6QmCRVZWsQpJqZIqY6ZQSo1hHGqiZGUcKqYSguZKcnoAFysuXUrV1oVuursy7z2diX8a-6Ezf9uKrvI5-45p1lMCEUd4GQNKLxrGq_N5haj_CvkfBNypz36bbZR_qTaCY7XAlE0-dK1vup-_wf0CXM7hZI</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Steed, P. Ryan</creator><creator>Stein, Richard A</creator><creator>Mishra, Smriti</creator><creator>Goodman, Michael C</creator><creator>Mchaourab, Hassane S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130827</creationdate><title>Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate</title><author>Steed, P. Ryan ; Stein, Richard A ; Mishra, Smriti ; Goodman, Michael C ; Mchaourab, Hassane S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antiporters - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites - drug effects</topic><topic>Daunorubicin - analogs & derivatives</topic><topic>Daunorubicin - metabolism</topic><topic>Daunorubicin - pharmacology</topic><topic>Escherichia coli - drug effects</topic><topic>Protein Binding</topic><topic>Sodium - metabolism</topic><topic>Sodium - pharmacology</topic><topic>Spin Labels</topic><topic>Vibrio cholerae - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steed, P. Ryan</creatorcontrib><creatorcontrib>Stein, Richard A</creatorcontrib><creatorcontrib>Mishra, Smriti</creatorcontrib><creatorcontrib>Goodman, Michael C</creatorcontrib><creatorcontrib>Mchaourab, Hassane S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steed, P. Ryan</au><au>Stein, Richard A</au><au>Mishra, Smriti</au><au>Goodman, Michael C</au><au>Mchaourab, Hassane S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>52</volume><issue>34</issue><spage>5790</spage><epage>5799</epage><pages>5790-5799</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to differing models of the mechanism of ion-coupled substrate extrusion. In the experiments reported here, we observed that a spin-labeled derivative of daunorubicin, Ruboxyl, is transported by NorM from Vibrio cholerae. It is therefore ideal for characterizing mechanistically relevant binding interactions with NorM and directly addressing the coupling of ion and drug binding. Fluorescence and electron paramagnetic resonance experiments revealed that Ruboxyl binds to NorM with micromolar affinity and becomes immobilized upon binding, even in the presence of Na+. Using double electron–electron resonance spectroscopy, we determined that Ruboxyl binds to a single site on the periplasmic side of the protein. The presence of Na+ did not translocate the substrate to a second site as previously proposed. These experiments surprisingly show that Na+ does not affect the affinity or location of the substrate binding site on detergent-solubilized NorM, thus suggesting that additional factors beyond simple mutual exclusivity of binding, such as the presence of a Na+ gradient across the native membrane, govern Na+–drug coupling during antiport.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23902581</pmid><doi>10.1021/bi4008935</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2013-08, Vol.52 (34), p.5790-5799 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3842230 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Antiporters - metabolism Bacterial Proteins - metabolism Binding Sites - drug effects Daunorubicin - analogs & derivatives Daunorubicin - metabolism Daunorubicin - pharmacology Escherichia coli - drug effects Protein Binding Sodium - metabolism Sodium - pharmacology Spin Labels Vibrio cholerae - chemistry |
title | Na+–Substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-Labeled Substrate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na+%E2%80%93Substrate%20Coupling%20in%20the%20Multidrug%20Antiporter%20NorM%20Probed%20with%20a%20Spin-Labeled%20Substrate&rft.jtitle=Biochemistry%20(Easton)&rft.au=Steed,%20P.%20Ryan&rft.date=2013-08-27&rft.volume=52&rft.issue=34&rft.spage=5790&rft.epage=5799&rft.pages=5790-5799&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi4008935&rft_dat=%3Cacs_pubme%3Eb062455199%3C/acs_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-f086819df76e56afdbe263a87c4712fc73e45f0d7f2593e2fb3293d5d7cb8db53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/23902581&rfr_iscdi=true |