Loading…

STAT3 Regulates Uterine Epithelial Remodeling and Epithelial-Stromal Crosstalk During Implantation

Embryo implantation is regulated by a variety of endometrial factors, including cytokines, growth factors, and transcription factors. Earlier studies identified the leukemia inhibitory factor (LIF), a cytokine produced by uterine glands, as an essential regulator of implantation. LIF, acting via its...

Full description

Saved in:
Bibliographic Details
Published in:Molecular endocrinology (Baltimore, Md.) Md.), 2013-12, Vol.27 (12), p.1996-2012
Main Authors: Pawar, Sandeep, Starosvetsky, Elina, Orvis, Grant D, Behringer, Richard R, Bagchi, Indrani C, Bagchi, Milan K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Embryo implantation is regulated by a variety of endometrial factors, including cytokines, growth factors, and transcription factors. Earlier studies identified the leukemia inhibitory factor (LIF), a cytokine produced by uterine glands, as an essential regulator of implantation. LIF, acting via its cell surface receptor, activates the signal transducer and activator of transcription 3 (STAT3) in the uterine epithelial cells. However, the precise mechanism via which activated STAT3 promotes uterine function during implantation remains unknown. To identify the molecular pathways regulated by STAT3, we created SWd/d mice in which Stat3 gene is conditionally inactivated in uterine epithelium. The SWd/d mice are infertile due to a lack of embryo attachment to the uterine luminal epithelium and consequent implantation failure. Gene expression profiling of uterine epithelial cells of SWd/d mice revealed dysregulated expression of specific components of junctional complexes, including E-cadherin, α- and β-catenin, and several claudins, which critically regulate epithelial junctional integrity and embryo attachment. In addition, uteri of SWd/d mice exhibited markedly reduced stromal proliferation and differentiation, indicating that epithelial STAT3 controls stromal function via a paracrine mechanism. The stromal defect arose from a drastic reduction in the production of several members of the epidermal growth factor family in luminal epithelium of SWd/d uteri and the resulting lack of activation of epidermal growth factor receptor signaling and mitotic activity in the stromal cells. Collectively, our results uncovered an intricate molecular network operating downstream of STAT3 that regulates uterine epithelial junctional reorganization, and stromal proliferation, and differentiation, which are critical determinants of successful implantation.
ISSN:0888-8809
1944-9917
DOI:10.1210/me.2013-1206