Loading…
Hexokinase activity is required for recruitment of parkin to depolarized mitochondria
Autosomal recessive parkinsonism genes contribute to maintenance of mitochondrial function. Two of these, PINK1 and parkin, act in a pathway promoting autophagic removal of depolarized mitochondria. Although recruitment of parkin to mitochondria is PINK1-dependent, additional components necessary fo...
Saved in:
Published in: | Human molecular genetics 2014-01, Vol.23 (1), p.145-156 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Autosomal recessive parkinsonism genes contribute to maintenance of mitochondrial function. Two of these, PINK1 and parkin, act in a pathway promoting autophagic removal of depolarized mitochondria. Although recruitment of parkin to mitochondria is PINK1-dependent, additional components necessary for signaling are unclear. We performed a screen for endogenous modifiers of parkin recruitment to depolarized mitochondria and identified hexokinase 2 (HK2) as a novel modifier of depolarization-induced parkin recruitment. Hexose kinase activity was required for parkin relocalization, suggesting the effects are shared among hexokinases including the brain-expressed hexokinase 1 (HK1). Knockdown of both HK1 and HK2 led to a stronger block in parkin relocalization than either isoform alone, and expression of HK2 in primary neurons promoted YFP-parkin recruitment to depolarized mitochondria. Mitochondrial parkin recruitment was attenuated with AKT inhibition, which is known to modulate HK2 activity and mitochondrial localization. We, therefore, propose that Akt-dependent recruitment of hexokinases is a required step in the recruitment of parkin prior to mitophagy. |
---|---|
ISSN: | 0964-6906 1460-2083 |
DOI: | 10.1093/hmg/ddt407 |