Loading…
Epithelial Nuclear Factor- kappa B orchestrates house dust mite-induced airway inflammation, hyperresponsiveness, and fibrotic remodeling
NF-κB activation within the epithelium has been implicated in the pathogenesis of asthma, yet the exact role of epithelial NF-κB in allergen-induced inflammation and airway remodeling remains unclear. In the present study, we utilized an intranasal House Dust Mite (HDM) extract exposure regimen time...
Saved in:
Published in: | The Journal of immunology (1950) 2013-11, Vol.191 (12) |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | NF-κB activation within the epithelium has been implicated in the pathogenesis of asthma, yet the exact role of epithelial NF-κB in allergen-induced inflammation and airway remodeling remains unclear. In the present study, we utilized an intranasal House Dust Mite (HDM) extract exposure regimen time course in BALB/c mice to evaluate inflammation, NF-κB activation, airway hyperresponsiveness (AHR), and airway remodeling. We utilized CC10-IκBα
SR
transgenic mice to evaluate the functional importance of epithelial NF-κB in response to HDM. After a single exposure of HDM, mRNA expression of pro-inflammatory mediators was significantly elevated in lung tissue of WT mice, in association with increases in nuclear RelA and RelB, components of the classical and alternative NF-κB pathway, respectively, in the bronchiolar epithelium. In contrast, CC10-IκBα
SR
mice displayed marked decreases in nuclear RelA and RelB and mRNA expression of pro-inflammatory mediators compared to WT mice. After 15 challenges with HDM, WT mice exhibited increases in inflammation, airway hyperresponsiveness, mucus metaplasia and peri-bronchiolar fibrosis. CC10-IκBα
SR
transgenic mice displayed marked decreases in neutrophilic infiltration, tissue damping, and elastance parameters, in association will less peri-bronchiolar fibrosis and decreases in nuclear RelB in lung tissue. However, central airway resistance and mucus metaplasia remained elevated in CC10-IκBα
SR
transgenic mice, in association with continued presence of lymphocytes, and partial decreases in eosinophils and IL-13. The current study demonstrates that following airway exposure with an asthma-relevant allergen, activation of classical and alternative NF-κB pathways occur within the airway epithelium and may coordinately contribute to allergic inflammation, AHR and fibrotic airway remodeling. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.1301329 |