Loading…

miR-219 Regulates Neural Precursor Differentiation by Direct Inhibition of Apical Par Polarity Proteins

Asymmetric self-renewing division of neural precursors is essential for brain development. Partitioning-defective (Par) proteins promote self-renewal, and their asymmetric distribution provides a mechanism for asymmetric division. Near the end of neural development, most asymmetric division ends and...

Full description

Saved in:
Bibliographic Details
Published in:Developmental cell 2013-11, Vol.27 (4), p.387-398
Main Authors: Hudish, Laura I., Blasky, Alex J., Appel, Bruce
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c547t-8566ba6bdb41b2bd055efaae614735de7a2e24a002881bf7af4b0399f56731fe3
cites cdi_FETCH-LOGICAL-c547t-8566ba6bdb41b2bd055efaae614735de7a2e24a002881bf7af4b0399f56731fe3
container_end_page 398
container_issue 4
container_start_page 387
container_title Developmental cell
container_volume 27
creator Hudish, Laura I.
Blasky, Alex J.
Appel, Bruce
description Asymmetric self-renewing division of neural precursors is essential for brain development. Partitioning-defective (Par) proteins promote self-renewal, and their asymmetric distribution provides a mechanism for asymmetric division. Near the end of neural development, most asymmetric division ends and precursors differentiate. This correlates with Par protein disappearance, but mechanisms that cause downregulation are unknown. MicroRNAs can promote precursor differentiation but have not been linked to Par protein regulation. We tested a hypothesis that microRNA miR-219 promotes precursor differentiation by inhibiting Par proteins. Neural precursors in zebrafish larvae lacking miR-219 function retained apical proteins, remained in the cell cycle, and failed to differentiate. miR-219 inhibited expression via target sites within the 3′ untranslated sequence of pard3 and prkci mRNAs, which encode Par proteins, and blocking miR-219 access to these sites phenocopied loss of miR-219 function. We propose that negative regulation of Par protein expression by miR-219 promotes cell-cycle exit and differentiation. [Display omitted] •miR-219 regulates neural precursor maintenance and specification•miR-219 inhibits expression of pard3 and prkci via 3′ UTR target sites•miR-219 reduction interferes with neuronal and glial cell differentiation The transition from self-renewing neural precursor division to neuronal and glial cell differentiation is an important step in development. Hudish et al. show in zebrafish that miR-219-mediated negative regulation of apical Par proteins, which help maintain self-renewing neural precursors, promotes cell-cycle exit and differentiation.
doi_str_mv 10.1016/j.devcel.2013.10.015
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3862977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580713006126</els_id><sourcerecordid>1622614488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-8566ba6bdb41b2bd055efaae614735de7a2e24a002881bf7af4b0399f56731fe3</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRAVLYV_gFCOXLJ4HH_lglS1fFSqaFWVs2Un461X2Xixk5X23-PtlgIXerL1Zt6bN_MIeQd0ARTkx9Wix22Hw4JRaAq0oCBekBPQStcgBLwsf9HwWmiqjsnrnFe00EDTV-SYcda0AsQJWa7Dbc2grW5xOQ92wlx9xznZobpJ2M0px1RdBO8x4TgFO4U4Vm5XoFKdqsvxPrjwAEZfnW1CtyfaVN3EwaYw7YpKnDCM-Q058nbI-PbxPSU_vny-O_9WX11_vTw_u6o7wdVUayGls9L1joNjrqdCoLcWJXDViB6VZci4pZRpDc4r67mjTdt6IVUDHptT8umgu5ndGvuuuC7LmE0Ka5t2Jtpg_q2M4d4s49Y0WrJWqSLw4VEgxZ8z5smsQy5nHuyIcc4GJGPFDdf6-VYumZK8XL208kNrl2LOCf2TI6BmH6dZmUOcZh_nHi1xFtr7v7d5Iv3O78-6WG66DZhM7gKOHfYPAZk-hv9P-AVWOLQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462764016</pqid></control><display><type>article</type><title>miR-219 Regulates Neural Precursor Differentiation by Direct Inhibition of Apical Par Polarity Proteins</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Hudish, Laura I. ; Blasky, Alex J. ; Appel, Bruce</creator><creatorcontrib>Hudish, Laura I. ; Blasky, Alex J. ; Appel, Bruce</creatorcontrib><description>Asymmetric self-renewing division of neural precursors is essential for brain development. Partitioning-defective (Par) proteins promote self-renewal, and their asymmetric distribution provides a mechanism for asymmetric division. Near the end of neural development, most asymmetric division ends and precursors differentiate. This correlates with Par protein disappearance, but mechanisms that cause downregulation are unknown. MicroRNAs can promote precursor differentiation but have not been linked to Par protein regulation. We tested a hypothesis that microRNA miR-219 promotes precursor differentiation by inhibiting Par proteins. Neural precursors in zebrafish larvae lacking miR-219 function retained apical proteins, remained in the cell cycle, and failed to differentiate. miR-219 inhibited expression via target sites within the 3′ untranslated sequence of pard3 and prkci mRNAs, which encode Par proteins, and blocking miR-219 access to these sites phenocopied loss of miR-219 function. We propose that negative regulation of Par protein expression by miR-219 promotes cell-cycle exit and differentiation. [Display omitted] •miR-219 regulates neural precursor maintenance and specification•miR-219 inhibits expression of pard3 and prkci via 3′ UTR target sites•miR-219 reduction interferes with neuronal and glial cell differentiation The transition from self-renewing neural precursor division to neuronal and glial cell differentiation is an important step in development. Hudish et al. show in zebrafish that miR-219-mediated negative regulation of apical Par proteins, which help maintain self-renewing neural precursors, promotes cell-cycle exit and differentiation.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2013.10.015</identifier><identifier>PMID: 24239515</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blotting, Western ; Cell Cycle ; Cell Differentiation ; Cell Polarity ; Cell Proliferation ; Danio rerio ; Immunoenzyme Techniques ; In Situ Hybridization ; Luciferases - metabolism ; MicroRNAs - genetics ; Neurogenesis - genetics ; Neurons - cytology ; Neurons - metabolism ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; Stem Cells - cytology ; Stem Cells - metabolism ; Zebrafish ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Developmental cell, 2013-11, Vol.27 (4), p.387-398</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-8566ba6bdb41b2bd055efaae614735de7a2e24a002881bf7af4b0399f56731fe3</citedby><cites>FETCH-LOGICAL-c547t-8566ba6bdb41b2bd055efaae614735de7a2e24a002881bf7af4b0399f56731fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24239515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hudish, Laura I.</creatorcontrib><creatorcontrib>Blasky, Alex J.</creatorcontrib><creatorcontrib>Appel, Bruce</creatorcontrib><title>miR-219 Regulates Neural Precursor Differentiation by Direct Inhibition of Apical Par Polarity Proteins</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>Asymmetric self-renewing division of neural precursors is essential for brain development. Partitioning-defective (Par) proteins promote self-renewal, and their asymmetric distribution provides a mechanism for asymmetric division. Near the end of neural development, most asymmetric division ends and precursors differentiate. This correlates with Par protein disappearance, but mechanisms that cause downregulation are unknown. MicroRNAs can promote precursor differentiation but have not been linked to Par protein regulation. We tested a hypothesis that microRNA miR-219 promotes precursor differentiation by inhibiting Par proteins. Neural precursors in zebrafish larvae lacking miR-219 function retained apical proteins, remained in the cell cycle, and failed to differentiate. miR-219 inhibited expression via target sites within the 3′ untranslated sequence of pard3 and prkci mRNAs, which encode Par proteins, and blocking miR-219 access to these sites phenocopied loss of miR-219 function. We propose that negative regulation of Par protein expression by miR-219 promotes cell-cycle exit and differentiation. [Display omitted] •miR-219 regulates neural precursor maintenance and specification•miR-219 inhibits expression of pard3 and prkci via 3′ UTR target sites•miR-219 reduction interferes with neuronal and glial cell differentiation The transition from self-renewing neural precursor division to neuronal and glial cell differentiation is an important step in development. Hudish et al. show in zebrafish that miR-219-mediated negative regulation of apical Par proteins, which help maintain self-renewing neural precursors, promotes cell-cycle exit and differentiation.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cell Cycle</subject><subject>Cell Differentiation</subject><subject>Cell Polarity</subject><subject>Cell Proliferation</subject><subject>Danio rerio</subject><subject>Immunoenzyme Techniques</subject><subject>In Situ Hybridization</subject><subject>Luciferases - metabolism</subject><subject>MicroRNAs - genetics</subject><subject>Neurogenesis - genetics</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Zebrafish</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v1DAQtRAVLYV_gFCOXLJ4HH_lglS1fFSqaFWVs2Un461X2Xixk5X23-PtlgIXerL1Zt6bN_MIeQd0ARTkx9Wix22Hw4JRaAq0oCBekBPQStcgBLwsf9HwWmiqjsnrnFe00EDTV-SYcda0AsQJWa7Dbc2grW5xOQ92wlx9xznZobpJ2M0px1RdBO8x4TgFO4U4Vm5XoFKdqsvxPrjwAEZfnW1CtyfaVN3EwaYw7YpKnDCM-Q058nbI-PbxPSU_vny-O_9WX11_vTw_u6o7wdVUayGls9L1joNjrqdCoLcWJXDViB6VZci4pZRpDc4r67mjTdt6IVUDHptT8umgu5ndGvuuuC7LmE0Ka5t2Jtpg_q2M4d4s49Y0WrJWqSLw4VEgxZ8z5smsQy5nHuyIcc4GJGPFDdf6-VYumZK8XL208kNrl2LOCf2TI6BmH6dZmUOcZh_nHi1xFtr7v7d5Iv3O78-6WG66DZhM7gKOHfYPAZk-hv9P-AVWOLQQ</recordid><startdate>20131125</startdate><enddate>20131125</enddate><creator>Hudish, Laura I.</creator><creator>Blasky, Alex J.</creator><creator>Appel, Bruce</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131125</creationdate><title>miR-219 Regulates Neural Precursor Differentiation by Direct Inhibition of Apical Par Polarity Proteins</title><author>Hudish, Laura I. ; Blasky, Alex J. ; Appel, Bruce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-8566ba6bdb41b2bd055efaae614735de7a2e24a002881bf7af4b0399f56731fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cell Cycle</topic><topic>Cell Differentiation</topic><topic>Cell Polarity</topic><topic>Cell Proliferation</topic><topic>Danio rerio</topic><topic>Immunoenzyme Techniques</topic><topic>In Situ Hybridization</topic><topic>Luciferases - metabolism</topic><topic>MicroRNAs - genetics</topic><topic>Neurogenesis - genetics</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Zebrafish</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hudish, Laura I.</creatorcontrib><creatorcontrib>Blasky, Alex J.</creatorcontrib><creatorcontrib>Appel, Bruce</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hudish, Laura I.</au><au>Blasky, Alex J.</au><au>Appel, Bruce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-219 Regulates Neural Precursor Differentiation by Direct Inhibition of Apical Par Polarity Proteins</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2013-11-25</date><risdate>2013</risdate><volume>27</volume><issue>4</issue><spage>387</spage><epage>398</epage><pages>387-398</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>Asymmetric self-renewing division of neural precursors is essential for brain development. Partitioning-defective (Par) proteins promote self-renewal, and their asymmetric distribution provides a mechanism for asymmetric division. Near the end of neural development, most asymmetric division ends and precursors differentiate. This correlates with Par protein disappearance, but mechanisms that cause downregulation are unknown. MicroRNAs can promote precursor differentiation but have not been linked to Par protein regulation. We tested a hypothesis that microRNA miR-219 promotes precursor differentiation by inhibiting Par proteins. Neural precursors in zebrafish larvae lacking miR-219 function retained apical proteins, remained in the cell cycle, and failed to differentiate. miR-219 inhibited expression via target sites within the 3′ untranslated sequence of pard3 and prkci mRNAs, which encode Par proteins, and blocking miR-219 access to these sites phenocopied loss of miR-219 function. We propose that negative regulation of Par protein expression by miR-219 promotes cell-cycle exit and differentiation. [Display omitted] •miR-219 regulates neural precursor maintenance and specification•miR-219 inhibits expression of pard3 and prkci via 3′ UTR target sites•miR-219 reduction interferes with neuronal and glial cell differentiation The transition from self-renewing neural precursor division to neuronal and glial cell differentiation is an important step in development. Hudish et al. show in zebrafish that miR-219-mediated negative regulation of apical Par proteins, which help maintain self-renewing neural precursors, promotes cell-cycle exit and differentiation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24239515</pmid><doi>10.1016/j.devcel.2013.10.015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-5807
ispartof Developmental cell, 2013-11, Vol.27 (4), p.387-398
issn 1534-5807
1878-1551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3862977
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Blotting, Western
Cell Cycle
Cell Differentiation
Cell Polarity
Cell Proliferation
Danio rerio
Immunoenzyme Techniques
In Situ Hybridization
Luciferases - metabolism
MicroRNAs - genetics
Neurogenesis - genetics
Neurons - cytology
Neurons - metabolism
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
Stem Cells - cytology
Stem Cells - metabolism
Zebrafish
Zebrafish Proteins - genetics
Zebrafish Proteins - metabolism
title miR-219 Regulates Neural Precursor Differentiation by Direct Inhibition of Apical Par Polarity Proteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-219%20Regulates%20Neural%20Precursor%20Differentiation%20by%20Direct%20Inhibition%20of%20Apical%20Par%20Polarity%20Proteins&rft.jtitle=Developmental%20cell&rft.au=Hudish,%20Laura%C2%A0I.&rft.date=2013-11-25&rft.volume=27&rft.issue=4&rft.spage=387&rft.epage=398&rft.pages=387-398&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2013.10.015&rft_dat=%3Cproquest_pubme%3E1622614488%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c547t-8566ba6bdb41b2bd055efaae614735de7a2e24a002881bf7af4b0399f56731fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1462764016&rft_id=info:pmid/24239515&rfr_iscdi=true