Loading…

Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis

A DNA double-strand break can be efficiently repaired in Escherichia coli if an oligodeoxyribonucleotide is provided to direct the repair. The oligonucleotide must be at least 20 residues long and have a sequence identical to sequences flanking the break. The phenomenon can be used to introduce defi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1986-10, Vol.83 (19), p.7177-7181
Main Author: Mandecki, Wlodek
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-13210b001af00b62dcb4523460c5ae7ae2cbc9384998283394356b5a007fe4723
cites
container_end_page 7181
container_issue 19
container_start_page 7177
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 83
creator Mandecki, Wlodek
description A DNA double-strand break can be efficiently repaired in Escherichia coli if an oligodeoxyribonucleotide is provided to direct the repair. The oligonucleotide must be at least 20 residues long and have a sequence identical to sequences flanking the break. The phenomenon can be used to introduce defined mutations into DNA in the area of a double-strand break. To obtain mutants, the oligonucleotide that carries a mutation and the denatured linearized plasmid DNA are introduced into E. coli by transformation. No enzymatic manipulation in vitro is required. The mutants can constitute up to 98% of the total number of transformants obtained. The efficiency of mutagenesis decreases as the distance between the mutation and the plasmid cleavage site increases. The universality of the method was tested by introducing mutations into four genes, usign four plasmids and three E. coli strains, as well as eight restriction enzymes to linearize DNA. Several models of the oligonucleotide-directed DNA double-strand break repair are discussed.
doi_str_mv 10.1073/pnas.83.19.7177
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_386678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>28433</jstor_id><sourcerecordid>28433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-13210b001af00b62dcb4523460c5ae7ae2cbc9384998283394356b5a007fe4723</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EKkNhjYQE8gKJVaZ-JbYrsShteUitiiisLce5mXHxxJHtQSD-PIlmGNENKy_Od87xvReh55QsKZH8ZBxsXiq-pHopqZQP0IISTatGaPIQLQhhslKCicfoSc53hBBdK3KEjnjNGSVigX7fBL-Kw9YFiMV3UF34BK5Ahy_itg1Q3ZZkhw6_S2C_4y8wWp-wH_DnYPPGdxnHHl9mt4bk3dpb7GLwp_gMX0NZxw73MeFbX6aYEZzvvcPX22JXMED2-Sl61NuQ4dn-PUbf3l9-Pf9YXd18-HR-dlW5aYpS0fmrLSHU9oS0DetcK2rGRUNcbUFaYK51miuhtWKKcy143bS1JUT2ICTjx-jtLnfcthvoHAzTTMGMyW9s-mWi9ea-Mvi1WcUfhqumkWryn-z8LsWcE_QHKyVmvoKZr2AUN1Sb-QqT4-W_jQd-v_ZJf73XbXY29NOKnc8HTCrJGj0Xv9pjc_5f9V7Pm_8Cpt-GUOBnmcgXO_Iul5gOKFOCc_4HZ2iyoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Mandecki, Wlodek</creator><creatorcontrib>Mandecki, Wlodek</creatorcontrib><description>A DNA double-strand break can be efficiently repaired in Escherichia coli if an oligodeoxyribonucleotide is provided to direct the repair. The oligonucleotide must be at least 20 residues long and have a sequence identical to sequences flanking the break. The phenomenon can be used to introduce defined mutations into DNA in the area of a double-strand break. To obtain mutants, the oligonucleotide that carries a mutation and the denatured linearized plasmid DNA are introduced into E. coli by transformation. No enzymatic manipulation in vitro is required. The mutants can constitute up to 98% of the total number of transformants obtained. The efficiency of mutagenesis decreases as the distance between the mutation and the plasmid cleavage site increases. The universality of the method was tested by introducing mutations into four genes, usign four plasmids and three E. coli strains, as well as eight restriction enzymes to linearize DNA. Several models of the oligonucleotide-directed DNA double-strand break repair are discussed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.83.19.7177</identifier><identifier>PMID: 3532104</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Base Sequence ; Biological and medical sciences ; Chromosome Mapping ; DNA ; DNA Repair ; Enzymes ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Genetic Engineering - methods ; Genetic mutation ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis ; Mutagenesis. Repair ; Mutation ; Nucleic Acid Hybridization ; Nucleotides ; Oligodeoxyribonucleotides - genetics ; Oligonucleotides ; Plasmids ; Point mutation ; Sequencing ; Site directed mutagenesis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1986-10, Vol.83 (19), p.7177-7181</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-13210b001af00b62dcb4523460c5ae7ae2cbc9384998283394356b5a007fe4723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/83/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/28433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/28433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7872698$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3532104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandecki, Wlodek</creatorcontrib><title>Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A DNA double-strand break can be efficiently repaired in Escherichia coli if an oligodeoxyribonucleotide is provided to direct the repair. The oligonucleotide must be at least 20 residues long and have a sequence identical to sequences flanking the break. The phenomenon can be used to introduce defined mutations into DNA in the area of a double-strand break. To obtain mutants, the oligonucleotide that carries a mutation and the denatured linearized plasmid DNA are introduced into E. coli by transformation. No enzymatic manipulation in vitro is required. The mutants can constitute up to 98% of the total number of transformants obtained. The efficiency of mutagenesis decreases as the distance between the mutation and the plasmid cleavage site increases. The universality of the method was tested by introducing mutations into four genes, usign four plasmids and three E. coli strains, as well as eight restriction enzymes to linearize DNA. Several models of the oligonucleotide-directed DNA double-strand break repair are discussed.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Chromosome Mapping</subject><subject>DNA</subject><subject>DNA Repair</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Engineering - methods</subject><subject>Genetic mutation</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis</subject><subject>Mutagenesis. Repair</subject><subject>Mutation</subject><subject>Nucleic Acid Hybridization</subject><subject>Nucleotides</subject><subject>Oligodeoxyribonucleotides - genetics</subject><subject>Oligonucleotides</subject><subject>Plasmids</subject><subject>Point mutation</subject><subject>Sequencing</subject><subject>Site directed mutagenesis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EKkNhjYQE8gKJVaZ-JbYrsShteUitiiisLce5mXHxxJHtQSD-PIlmGNENKy_Od87xvReh55QsKZH8ZBxsXiq-pHopqZQP0IISTatGaPIQLQhhslKCicfoSc53hBBdK3KEjnjNGSVigX7fBL-Kw9YFiMV3UF34BK5Ahy_itg1Q3ZZkhw6_S2C_4y8wWp-wH_DnYPPGdxnHHl9mt4bk3dpb7GLwp_gMX0NZxw73MeFbX6aYEZzvvcPX22JXMED2-Sl61NuQ4dn-PUbf3l9-Pf9YXd18-HR-dlW5aYpS0fmrLSHU9oS0DetcK2rGRUNcbUFaYK51miuhtWKKcy143bS1JUT2ICTjx-jtLnfcthvoHAzTTMGMyW9s-mWi9ea-Mvi1WcUfhqumkWryn-z8LsWcE_QHKyVmvoKZr2AUN1Sb-QqT4-W_jQd-v_ZJf73XbXY29NOKnc8HTCrJGj0Xv9pjc_5f9V7Pm_8Cpt-GUOBnmcgXO_Iul5gOKFOCc_4HZ2iyoA</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>Mandecki, Wlodek</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>19861001</creationdate><title>Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis</title><author>Mandecki, Wlodek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-13210b001af00b62dcb4523460c5ae7ae2cbc9384998283394356b5a007fe4723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Chromosome Mapping</topic><topic>DNA</topic><topic>DNA Repair</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Engineering - methods</topic><topic>Genetic mutation</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis</topic><topic>Mutagenesis. Repair</topic><topic>Mutation</topic><topic>Nucleic Acid Hybridization</topic><topic>Nucleotides</topic><topic>Oligodeoxyribonucleotides - genetics</topic><topic>Oligonucleotides</topic><topic>Plasmids</topic><topic>Point mutation</topic><topic>Sequencing</topic><topic>Site directed mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandecki, Wlodek</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandecki, Wlodek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1986-10-01</date><risdate>1986</risdate><volume>83</volume><issue>19</issue><spage>7177</spage><epage>7181</epage><pages>7177-7181</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>A DNA double-strand break can be efficiently repaired in Escherichia coli if an oligodeoxyribonucleotide is provided to direct the repair. The oligonucleotide must be at least 20 residues long and have a sequence identical to sequences flanking the break. The phenomenon can be used to introduce defined mutations into DNA in the area of a double-strand break. To obtain mutants, the oligonucleotide that carries a mutation and the denatured linearized plasmid DNA are introduced into E. coli by transformation. No enzymatic manipulation in vitro is required. The mutants can constitute up to 98% of the total number of transformants obtained. The efficiency of mutagenesis decreases as the distance between the mutation and the plasmid cleavage site increases. The universality of the method was tested by introducing mutations into four genes, usign four plasmids and three E. coli strains, as well as eight restriction enzymes to linearize DNA. Several models of the oligonucleotide-directed DNA double-strand break repair are discussed.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>3532104</pmid><doi>10.1073/pnas.83.19.7177</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1986-10, Vol.83 (19), p.7177-7181
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_386678
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Base Sequence
Biological and medical sciences
Chromosome Mapping
DNA
DNA Repair
Enzymes
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
Genetic Engineering - methods
Genetic mutation
Molecular and cellular biology
Molecular genetics
Mutagenesis
Mutagenesis. Repair
Mutation
Nucleic Acid Hybridization
Nucleotides
Oligodeoxyribonucleotides - genetics
Oligonucleotides
Plasmids
Point mutation
Sequencing
Site directed mutagenesis
title Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligonucleotide-Directed%20Double-Strand%20Break%20Repair%20in%20Plasmids%20of%20Escherichia%20coli:%20A%20Method%20for%20Site-Specific%20Mutagenesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mandecki,%20Wlodek&rft.date=1986-10-01&rft.volume=83&rft.issue=19&rft.spage=7177&rft.epage=7181&rft.pages=7177-7181&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.83.19.7177&rft_dat=%3Cjstor_pubme%3E28433%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-13210b001af00b62dcb4523460c5ae7ae2cbc9384998283394356b5a007fe4723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/3532104&rft_jstor_id=28433&rfr_iscdi=true