Loading…
Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis
A DNA double-strand break can be efficiently repaired in Escherichia coli if an oligodeoxyribonucleotide is provided to direct the repair. The oligonucleotide must be at least 20 residues long and have a sequence identical to sequences flanking the break. The phenomenon can be used to introduce defi...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1986-10, Vol.83 (19), p.7177-7181 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-13210b001af00b62dcb4523460c5ae7ae2cbc9384998283394356b5a007fe4723 |
---|---|
cites | |
container_end_page | 7181 |
container_issue | 19 |
container_start_page | 7177 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 83 |
creator | Mandecki, Wlodek |
description | A DNA double-strand break can be efficiently repaired in Escherichia coli if an oligodeoxyribonucleotide is provided to direct the repair. The oligonucleotide must be at least 20 residues long and have a sequence identical to sequences flanking the break. The phenomenon can be used to introduce defined mutations into DNA in the area of a double-strand break. To obtain mutants, the oligonucleotide that carries a mutation and the denatured linearized plasmid DNA are introduced into E. coli by transformation. No enzymatic manipulation in vitro is required. The mutants can constitute up to 98% of the total number of transformants obtained. The efficiency of mutagenesis decreases as the distance between the mutation and the plasmid cleavage site increases. The universality of the method was tested by introducing mutations into four genes, usign four plasmids and three E. coli strains, as well as eight restriction enzymes to linearize DNA. Several models of the oligonucleotide-directed DNA double-strand break repair are discussed. |
doi_str_mv | 10.1073/pnas.83.19.7177 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_386678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>28433</jstor_id><sourcerecordid>28433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-13210b001af00b62dcb4523460c5ae7ae2cbc9384998283394356b5a007fe4723</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EKkNhjYQE8gKJVaZ-JbYrsShteUitiiisLce5mXHxxJHtQSD-PIlmGNENKy_Od87xvReh55QsKZH8ZBxsXiq-pHopqZQP0IISTatGaPIQLQhhslKCicfoSc53hBBdK3KEjnjNGSVigX7fBL-Kw9YFiMV3UF34BK5Ahy_itg1Q3ZZkhw6_S2C_4y8wWp-wH_DnYPPGdxnHHl9mt4bk3dpb7GLwp_gMX0NZxw73MeFbX6aYEZzvvcPX22JXMED2-Sl61NuQ4dn-PUbf3l9-Pf9YXd18-HR-dlW5aYpS0fmrLSHU9oS0DetcK2rGRUNcbUFaYK51miuhtWKKcy143bS1JUT2ICTjx-jtLnfcthvoHAzTTMGMyW9s-mWi9ea-Mvi1WcUfhqumkWryn-z8LsWcE_QHKyVmvoKZr2AUN1Sb-QqT4-W_jQd-v_ZJf73XbXY29NOKnc8HTCrJGj0Xv9pjc_5f9V7Pm_8Cpt-GUOBnmcgXO_Iul5gOKFOCc_4HZ2iyoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Mandecki, Wlodek</creator><creatorcontrib>Mandecki, Wlodek</creatorcontrib><description>A DNA double-strand break can be efficiently repaired in Escherichia coli if an oligodeoxyribonucleotide is provided to direct the repair. The oligonucleotide must be at least 20 residues long and have a sequence identical to sequences flanking the break. The phenomenon can be used to introduce defined mutations into DNA in the area of a double-strand break. To obtain mutants, the oligonucleotide that carries a mutation and the denatured linearized plasmid DNA are introduced into E. coli by transformation. No enzymatic manipulation in vitro is required. The mutants can constitute up to 98% of the total number of transformants obtained. The efficiency of mutagenesis decreases as the distance between the mutation and the plasmid cleavage site increases. The universality of the method was tested by introducing mutations into four genes, usign four plasmids and three E. coli strains, as well as eight restriction enzymes to linearize DNA. Several models of the oligonucleotide-directed DNA double-strand break repair are discussed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.83.19.7177</identifier><identifier>PMID: 3532104</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Base Sequence ; Biological and medical sciences ; Chromosome Mapping ; DNA ; DNA Repair ; Enzymes ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Genetic Engineering - methods ; Genetic mutation ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis ; Mutagenesis. Repair ; Mutation ; Nucleic Acid Hybridization ; Nucleotides ; Oligodeoxyribonucleotides - genetics ; Oligonucleotides ; Plasmids ; Point mutation ; Sequencing ; Site directed mutagenesis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1986-10, Vol.83 (19), p.7177-7181</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-13210b001af00b62dcb4523460c5ae7ae2cbc9384998283394356b5a007fe4723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/83/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/28433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/28433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7872698$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3532104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandecki, Wlodek</creatorcontrib><title>Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A DNA double-strand break can be efficiently repaired in Escherichia coli if an oligodeoxyribonucleotide is provided to direct the repair. The oligonucleotide must be at least 20 residues long and have a sequence identical to sequences flanking the break. The phenomenon can be used to introduce defined mutations into DNA in the area of a double-strand break. To obtain mutants, the oligonucleotide that carries a mutation and the denatured linearized plasmid DNA are introduced into E. coli by transformation. No enzymatic manipulation in vitro is required. The mutants can constitute up to 98% of the total number of transformants obtained. The efficiency of mutagenesis decreases as the distance between the mutation and the plasmid cleavage site increases. The universality of the method was tested by introducing mutations into four genes, usign four plasmids and three E. coli strains, as well as eight restriction enzymes to linearize DNA. Several models of the oligonucleotide-directed DNA double-strand break repair are discussed.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Chromosome Mapping</subject><subject>DNA</subject><subject>DNA Repair</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Engineering - methods</subject><subject>Genetic mutation</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis</subject><subject>Mutagenesis. Repair</subject><subject>Mutation</subject><subject>Nucleic Acid Hybridization</subject><subject>Nucleotides</subject><subject>Oligodeoxyribonucleotides - genetics</subject><subject>Oligonucleotides</subject><subject>Plasmids</subject><subject>Point mutation</subject><subject>Sequencing</subject><subject>Site directed mutagenesis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EKkNhjYQE8gKJVaZ-JbYrsShteUitiiisLce5mXHxxJHtQSD-PIlmGNENKy_Od87xvReh55QsKZH8ZBxsXiq-pHopqZQP0IISTatGaPIQLQhhslKCicfoSc53hBBdK3KEjnjNGSVigX7fBL-Kw9YFiMV3UF34BK5Ahy_itg1Q3ZZkhw6_S2C_4y8wWp-wH_DnYPPGdxnHHl9mt4bk3dpb7GLwp_gMX0NZxw73MeFbX6aYEZzvvcPX22JXMED2-Sl61NuQ4dn-PUbf3l9-Pf9YXd18-HR-dlW5aYpS0fmrLSHU9oS0DetcK2rGRUNcbUFaYK51miuhtWKKcy143bS1JUT2ICTjx-jtLnfcthvoHAzTTMGMyW9s-mWi9ea-Mvi1WcUfhqumkWryn-z8LsWcE_QHKyVmvoKZr2AUN1Sb-QqT4-W_jQd-v_ZJf73XbXY29NOKnc8HTCrJGj0Xv9pjc_5f9V7Pm_8Cpt-GUOBnmcgXO_Iul5gOKFOCc_4HZ2iyoA</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>Mandecki, Wlodek</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>19861001</creationdate><title>Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis</title><author>Mandecki, Wlodek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-13210b001af00b62dcb4523460c5ae7ae2cbc9384998283394356b5a007fe4723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Chromosome Mapping</topic><topic>DNA</topic><topic>DNA Repair</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Engineering - methods</topic><topic>Genetic mutation</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis</topic><topic>Mutagenesis. Repair</topic><topic>Mutation</topic><topic>Nucleic Acid Hybridization</topic><topic>Nucleotides</topic><topic>Oligodeoxyribonucleotides - genetics</topic><topic>Oligonucleotides</topic><topic>Plasmids</topic><topic>Point mutation</topic><topic>Sequencing</topic><topic>Site directed mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandecki, Wlodek</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandecki, Wlodek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1986-10-01</date><risdate>1986</risdate><volume>83</volume><issue>19</issue><spage>7177</spage><epage>7181</epage><pages>7177-7181</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>A DNA double-strand break can be efficiently repaired in Escherichia coli if an oligodeoxyribonucleotide is provided to direct the repair. The oligonucleotide must be at least 20 residues long and have a sequence identical to sequences flanking the break. The phenomenon can be used to introduce defined mutations into DNA in the area of a double-strand break. To obtain mutants, the oligonucleotide that carries a mutation and the denatured linearized plasmid DNA are introduced into E. coli by transformation. No enzymatic manipulation in vitro is required. The mutants can constitute up to 98% of the total number of transformants obtained. The efficiency of mutagenesis decreases as the distance between the mutation and the plasmid cleavage site increases. The universality of the method was tested by introducing mutations into four genes, usign four plasmids and three E. coli strains, as well as eight restriction enzymes to linearize DNA. Several models of the oligonucleotide-directed DNA double-strand break repair are discussed.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>3532104</pmid><doi>10.1073/pnas.83.19.7177</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1986-10, Vol.83 (19), p.7177-7181 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_386678 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Base Sequence Biological and medical sciences Chromosome Mapping DNA DNA Repair Enzymes Escherichia coli - genetics Fundamental and applied biological sciences. Psychology Genetic Engineering - methods Genetic mutation Molecular and cellular biology Molecular genetics Mutagenesis Mutagenesis. Repair Mutation Nucleic Acid Hybridization Nucleotides Oligodeoxyribonucleotides - genetics Oligonucleotides Plasmids Point mutation Sequencing Site directed mutagenesis |
title | Oligonucleotide-Directed Double-Strand Break Repair in Plasmids of Escherichia coli: A Method for Site-Specific Mutagenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligonucleotide-Directed%20Double-Strand%20Break%20Repair%20in%20Plasmids%20of%20Escherichia%20coli:%20A%20Method%20for%20Site-Specific%20Mutagenesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mandecki,%20Wlodek&rft.date=1986-10-01&rft.volume=83&rft.issue=19&rft.spage=7177&rft.epage=7181&rft.pages=7177-7181&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.83.19.7177&rft_dat=%3Cjstor_pubme%3E28433%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-13210b001af00b62dcb4523460c5ae7ae2cbc9384998283394356b5a007fe4723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/3532104&rft_jstor_id=28433&rfr_iscdi=true |